
CONVERSION OF FEDERAL ADP SYSTEMS:
A TUTORIAL

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act of Congress on March 3, 1901.

The Bureau's overall goal is to strengthen and advance the Nation's science and technology

and facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in

trade, and (4) technical services to promote public safety. The Bureau's technical work is per-

formed by the National Measurement Laboratory, the National Engineering Laboratory, and

the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of

physical and chemical and materials measurement; coordinates the system with measurement

systems of other nations and furnishes essential services leading to accurate and uniform

physical and chemical measurement throughout the Nation's scientific community, industry,

and commerce; conducts materials research leading to improved methods of measurement,

standards, and data on the properties of materials needed by industry, commerce, educational

institutions, and Government; provides advisory and research services to other Government

agencies; develops, produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities' — Radiation Research — Thermodynamics and

Molecular Science — Analytical Chemistry — Materials Science.

THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser-

vices to the public and private sectors to address national needs and to solve national

problems; conducts research in engineering and applied science in support of these efforts;

builds and maintains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement capabilities;

provides engineering measurement traceability services; develops test methods and proposes

engineering standards and code changes; develops and proposes new engineering practices;

and develops and improves mechanisms to transfer results of its research to the ultimate user.

The Laboratory consists of the following centers:

.Applied Mathematics — Electronics and Electrical Engineering^ — Mechanical

Engineering and Process Technology^ — Building Technology — Fire Research —
Consumer Product Technology — Field Methods.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts

research and provides scientific and technical services to aid Federal agencies in the selection,

acquisition, application, and use of computer technology to improve effectiveness and

economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759),

relevant Executive Orders, and other directives; carries out this mission by managing the

Federal Information Processing Standards Program, developing Federal ADP standards

guidelines, and managing Federal participation in ADP voluntary standardization activities;

provides scientific and technological advisory services and assistance to Federal agencies; and

provides the technical foundation for computer-related policies of the Federal Government.

The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

' Headquarters and Laboratories at Gaithersburg, M D, unless otherwise noted;

mailing address Washington. DC 20234.

-Some divisions within the center are located at Boulder, CO 80303.

NttlMil Burnti ol SOnMrti

SEP 1 2 1980

COMPUTER SCIENCE & TECHNOLOGY:

CONVERSION OF FEDERAL ADP SYSTEMS:
A TUTORIAL

Joseph Collica

Mark Skall

Gloria Bolotsky

Center for Programming Science and Technology
Institute for Computer Sciences and Technology
National Bureau of Standards
Washington, DC 20234

U.S. DEPARTMENT OF COMMERCE, Philip M. Klutznick Secretary

Luther H. Hodges, Jr., Deputy Secretary

Jordan J. Baruch, Assistant Secretary for Productivity, Technology and Innovation

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Issued August 1980

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness of

computer utilization in the Federal sector, and to perform appropriate research and

development efforts as foundation for such activities and programs. This publication

series will report these NBS efforts to the Federal computer community as well as to

interested specialists in the academic and private sectors. Those wishing to receive

notices of publications in this series should complete and return the form at the end

of this publicaton.

National Bureau of Standards Special Publication 500-62

Nat. Bur. Stand. (U.S.), Spec. Publ. 500-62, 73 pages (Aug. 1980)

CODEN: XNBSAV

Library of Congress Catalog Card Number: 80-600106

U.S. GOVERNMENT PRINTING OFFICE

WASHINGTON: 1980

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402

Price $4.00

(Add 25 percent for other than U.S. mailing)

PREFACE

The average life of a Federal computer system is es-
timated to be between seven and eight years, which is about
double the average tenure of a computer programmer/analyst
at a given installation. Too often, an agency is faced with
the prospect of a conversion with personnel who are inex-
perienced in conversion techniques, and also lack an inti-
mate knowledge of the system requiring the conversion. With
the original implementors long since gone, and documenta-
tion, if it exists at all, of very poor quality, the conver-
sion task becomes a dreaded experience. Hence, the conver-
sion of Federal computer systems software has become one of
the most costly, difficult and time-consuming tasks associ-
ated with the use and maintenance of computer software.

The General Accounting Office, in a 1977 report enti-
tled MILLIONS IN SAVINGS POSSIBLE IN CONVERTING PROGRAMS
FROM ONE COMPUTER TO ANOTHER , estimates that over $450 mil-
lion is spent annually on Federal computer software conver-
sion. Of that amount, GAO estimates that more than $100
million could be saved by utilizing better conversion tech-
niques. One of the reasons for which the National Bureau of
Standards undertook this study was to understand better the
process of conversion.

This study has shown that, often, the results of
conversions have been less than satisfactory in the exces-
sive costs, in the performance of the converted system, and
in the system's usefulness. Too often, conversion is at-
tempted without an adequate analysis and assessment of the
existing system, which includes programs, input data, output
data, documentation requirements, and the conversion
technique(s) which could most efficiently and effectively
handle the conversion problems. Often, time spent
reevaluating and resolving problems can be reduced if the
adequate conversion experience and technique (s) are em-
ployed.

Due to time constraints and the lack of in-house exper-
tise, agencies are often compelled to contract out the
conversion. Many times, poor performance of a converted
system can be traced back to the RFP, written by Federal
agencies to acquire conversion services. Federal agency
personnel who have been involved in writing RFP's for
conversion services are very often confused concerning the
type of information that should be included within the RFP,
the types of deliverables which need to be specified, and
the ways in which to define completion. Many agencies fail
to include any performance constraints in a conversion RFP,

-i i i-

asking instead for functionally equivalent source code.
This invariably leads to degradation in performance and may
result in a converted system which does not meet the user's
needs. Confusion in contracting out for conversion services
is further evidenced by the fact that there does not
presently exist an official procurement policy or regulation
which adequately deals with the treatment of conversion
costs in evaluating vendor proposals during computer system
acquisition.

Conversion is difficult even under well-planned condi-
tions and a direct correlation can be drawn between the high
costs associated with conversion and the lack of adequate
conversion guidelines, analysis, experience and training.
Another factor which can have almost as much impact on
software conversion as cost, can be the time required to
convert from one software system to another.

The major intent of this study is to develop a

comprehensive conversion program within the National Bureau
of Standards which would assist in reducing the costs and
difficulties of conversion in the Federal Government.
Chapter 7 describes the guidelines and standards which NBS
has included in the formulation of its conversion program.

-iv-

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

2. THE CONVERSION PROCESS 9

3. DATABASE MANAGEMENT CONSIDERATIONS 20

4. CONVERSION EXPERTS AND TOOLS 25

4.1 Company A 25

4.2 Company B 27

4.3 Company C 30

4.4 Company D 31

5. FEDERAL GOVERNMENT AGENCIES: CONVERSION EXPERIENCE . 34

5.1 Agency A 34

5.2 Agency B 39

5.3 Agency C 43

6. CONVERSION LITERATURE—A SURVEY 46

7. CONCLUSIONS 53

7.1 Management Problems 53

7.2 Conversion Costs 56

7.3 Conversion Tools 57

7.4 Personnel Problems In Conversion 58

7.5 The Effects Of Standards On Conversion 59

7.6 Critical Areas 59

Appendix A: Questions For Vendors and Federal Agencies . 63

Appendix B: Bibliography and References 65

-V-

CONVERSION OF FEDERAL ADP SYSTEMS: A TUTORIAL

Joseph C.
Mark W.

Gloria R.

Coll ica
Skall
Bolotsky

This tutorial report was undertaken to pro-
vide a better understanding of conversion of
Federal Government ADP Systems. Three sources
were used for gathering the required information
to prepare this tutorial: (1) interviews with com-
mercial conversion experts; (2) interviews with
Federal Government agency personnel who have re-
cently experienced conversions; (3) current
literature. The first three chapters comprise the
tutorial. The next three chapters discuss the in-
formation gathered from the above three sources.
The last chapter summarizes the authors' conclu-
sions, while highlighting the major problem areas
requiring guidance.

Key words: Conversion costs; conversion problems;
conversion tools; database management; Federal
agencies; language translators; maintenance; por-
tability.

1. INTRODUCTION

Human beings have the ability to adapt to a changing
environment. Adapting is seldom accomplished easily or
quickly. Humans also have the tendency to resist change.
The ability to adapt successfully to change versus the ten-
dency to resist change characterizes the two extremes in-
volved in converting Federal ADP systems.

The process and difficulty of converting Federal
Government computer systems is not well understood. This
study of Federal ADP system conversion by the Center for
Programming Science and Technology provides information
based upon three major sources: the experience of Federal
Government agencies who have gone through conversion.

-1-

interviews with vendors who perform conversion services and
provide conversion tools, and available conversion litera-
ture.

There are seven chapters and two appendices in this
study. The first three chapters comprise a tutorial.
Chapter 1 defines conversion, describes the alternative
techniques used in conversions and relates conversion to
maintenance, new development and portability. Chapter 2

describes the typical conversion process and the various
phases of conversion. Chapter 3 describes the ways in which
database management considerations affect the conversion
process. The next three chapters discuss the information
gathered from the sources used in this study. Chapter 4

summarizes the information obtained from conversion special-
ists who perform conversions and provide conversion tools.
Chapter 5 describes the experience of Federal Government
agencies who have undergone conversion. Chapter 6 provides
a review of significant conversion literature and Chapter 7

summarizes the authors' conclusions. Note: Bracketed
numbers ,i.e. [N], refer to references in Appendix B.

There are many very unfortunate stories about the dif-
ficulties and costs of conversion. In a 1977 report [23]
GAO estimated that $450 million are spent annually by the
Federal Government on software conversion. In that report
it was also estimated that $100 million of that amount could
have been saved. The intent of this study is to bring into
focus major problem areas in the conversion process. Having
pin-pointed the problems, this study recommends conversion
guidelines which will aid Federal Government users in avoid-
ing the pitfalls and exorbitant costs of conversions that
have been experienced to date.

This study was performed by representatives from the
three Divisions of the Center for Programming Science and
Technology: the Programming Science Division, the Applica-
tion Systems Division, and the Operations Engineering Divi-
sion. Each of the division representatives provided a dif-
ferent viewpoint concerning conversion: programming
languages, database management systems, and computer opera-
tions (security, performance).

Federal Government personnel who participated in three
large conversion efforts were interviewed along with four
commercial conversion companies. One of the four commercial
conversion companies visited NBS to present their view of
conversion. The questions the participants were asked were
very similiar to those in Appendix A. Some of these ques-
tions were:

-2-

What was the reason for conversion?
What can be done to minimize conversion problems?
What types of automated tools are helpful?
What are the human problems in conversion?

What Is Conversion ?

Conversion can be defined as the process of transport-
ing a computer system from one environment to a different
environment while maintaining the functional requirements of
the original system. From the user's viewpoint, the system
of programs performs the same functions in the old and new
environments. The existing environment is referred to as
the source environment, and the new environment is referred
to as the target environment.

Programs are designed for a particular hardware and
software environment. When programs are designed, the best
available techniques should be used for program development
(modular programming, standardized languages with no vendor
extensions, and no unusual tricks that would make programs
difficult to convert). Even though these techniques may
cause degradation of run-time efficiency, these techniques,
along with many others, are currently recommended for new
development since they will minimize the efforts of future
conversions.

However, many existing programs in Federal Government
agencies were designed for, and are operating on, computer
systems that are fifteen years old and older, before on-line
systems, random access and telecommunications were generally
available. Many of these programs use techniques common to
second generation computers, such as tape oriented batch
systems, programming in assembly language or programming in
very early versions of COBOL, FORTRAN, or other languages
such as AUTOCODER.

In many cases, these programs perform vital functions
for agencies such as providing payments to retirees, stu-
dents, or agency personnel. Converting these operational
programs from the source environment to the target environ-
ment can be a difficult, costly, and time-consuming task.
Conversion of these systems must, therefore, be justified by
existing constraints, such as:

* Obsolete hardware or software - The hardware or
software is no longer supported by its manufacturer
- for example, parts are unavailable.

1e

*

*

-3-

* System saturation - There are not enough hours in a

day to run all the application programs - i.e., an
outgrowth of the existing computer hardware/software
environment.

The decision to convert should be based upon sound
economic philosophy. Conversion should be more cost-
effective than the various alternatives to conversion which
are available. Some of these alternatives are:

* An additional hardware system like the existing one
can be obtained and run in parallel.

* A more powerful and compatible version of the ex-
isting hardware/software system can replace the ex-
isting system.

* Compatible timesharing services which would augment
the present computer system can be obtained.

* The existing computer system can be augmented with
more main memory, newer or more modern peripherals,
etc.

* Performance measurement techniques can be used to
fine tune the system and circumvent bottlenecks.

Procuring a more powerful computer system which is not
compatible with the existing system, or new software such as
a database management system or operating system which is
not compatible with the existing system, will probably
necessitate a conversion.

Techniques In The Conversion Process

Once the decision to convert has been made, there are a

number of techniques which can be used in conversion: reced-
ing, reprog ramming , and redesign. The conversion literature
uses inconsistent terminology to describe conversion tech-
niques. The following definitions were developed for this
report and are used consistently throughout:

* Receding - Each line of code is translated to an
equivalent line(s) of code on the new computer sys-
tem. This translation can be accomplished manually
through visual inspection of the code, automatical-
ly through specialized software, or by a combination
of the two techniques. From the user's and
designer's point of view, the system remains un-
changed (with the exception of processing time.

-4-

which may either have increased or decreased.) One
line of code may get translated to many lines of
code or many lines of code may get translated to one
line of code. The type of transformation that oc-
curs depends upon the source and target languages.
Examples are COBOL to COBOL, assembly language to
COBOL, and FORTRAN to FORTRAN. If the source and
target languages are similar, much of the transla-
tion will be one-to-one.

* Reprogramming or functional translation - Some or
all new code is produced. All the code is not
translated on a 1 ine-for-1 ine basis^ but the same
functions from a designer's and user's viewpoint
remain, along with the same algorithms. Different
logic is used to program the same functions, result-
ing in greater efficiency.

* Redesign - A new system specification is required.
The entire design of the system may change, result-
ing in different algorithms to accomplish the same
functions. Different program structure and dif-
ferent logic may be used. New techniques such as
database management may be incorporated, and the
structure of program files may change drastically.
The new system specification is related to the pre-
vious system because the same functions, from the
viewpoint of the user, are produced. Changes in the
system are transparent to the user.

Note: All three of these techniques are considered
conversion because the functional requirements remain the
same. Once the functional requirements change, a new
development will be required.

A particular conversion may use any one, or a combina-
tion, of receding, reprogramming, and redesign. Few addi-
tional specifications are required for receding since the
existing programs and data constitute the specifications.

There are inherent pitfalls, however, in the choice of
receding as the single conversion method. There is a

greater probability that state-of-the-art techniques for im-
proving program efficiency and maintainability will not be
incorporated in the target system, ultimately reducing its
expected life. Additionally, this method may result in sub-
stantial increases in maintenance costs.

The reprogramming method of conversion is used to pro-
duce a more efficient system. Many of the techniques
described above, such as modular programming and standard-
ized languages can be incorporated into the new reprogrammed

-5-

system. In order to perform reprogramming , documentation of
the functions of the system as well as program code may be
required. This documentation may not always be available.
For a reprog ramming conversion, the combination of function-
al specifications together with the original programs
comprises the new system specifications.

In redesign, system specifications of the new system
are required. When this option is chosen, the new system is
more likely to be implemented in-house since in-depth
knowledge of the source system is needed.

Ma intenance And Conversion

Maintenance can be defined as any change made to a sys-
tem after completion of the initial development, excluding
conversion. Both maintenance and conversion involve changes
to programs. When does conversion end and maintenance be-
gin, or when does maintenance end and conversion begin?
Conversion certainly occurs when programs are being moved to
a new operating environment (target). However, what about
the changes that occur from the following? These conditions
cannot be considered conversion:

* The user requirements have changed, thus leading to
enhancements which must be incorporated into the
prog ram

.

* The performance of the program needs to be improved.

* The program needs to be structured better for easier
maintenance.

* Errors which need to be corrected exist in the pro-
gram .

These four conditions do not appropriately fit under
the category of conversion and should be classified as
maintenance activities. However, any or all of the above
conditions may exist at the same time that a conversion is
undertaken, and may need to be addressed to make the source
programs work successfully in the target environment. These
conditions are sometimes erroneously thought of as being
part of the conversion process. Experienced conversion com-
panies tend to make these changes before the conversion be-
gins or after the conversion has been completed in order to
prevent the compounding of errors.

New Development Versus Conversion

-6-

New development, maintenance, and conversion are
software-producing activities which are inter-dependent.
The quality of the original design specifications directly
influences maintenance and conversion costs. If new systems
are designed for ease of maintenance and conversion, mainte-
nance and conversion costs may be significantly reduced.

In the New Software Economics [9], Werner Frank states
that maintenance costs surpass the original development ef-
fort by an impressive factor of 3 to 5 times, assuming at
least a five year operating life for the software. The
maintenance costs must be an important consideration in the
conversion decision. One factor that affects future mainte-
nance is the quality of the conversion.

Before conversion is attempted, all of the techniques
(receding, reprog ramming , and redesign) should be assessed.
Before this assessment can be done, information must be
gathered concerning the types of programs in the inventory,
their future life expectancy, and the functions that will be
required in the future. If the future functional require-
ments match the present system's capabilities, then conver-
sion can be a good option. If the system design is rela-
tively modern, it is more likely that an effective conver-
sion will result. On the other hand, during the NBS conver-
sion study, the members of the conversion team have seen
cases of conversion of assembly language programs to COBOL
in which the running times are many times greater on the new
hardware than on the old hardware. This increased running
time resulted from using the old design on the new system.

The decision may be that new system requirements would
be better met by a redesign or new development rather than a

recoding or reprog ramming . Redesign or new development
could incorporate more efficient use of hardware and
software resources and at the same time incorporate those
aspects which make the new system easier to maintain and
eventually convert.

Portabil i ty And Conversion

Portability is the term used to describe the properties
of a program which enable it to be more easily transferred
to another environment. Portability should be one of the
major concerns in new system design and development.
Conversion will be easier and less costly to perform if po-
tential conversion problems are anticipated and planned for
during the design of the system.

-7-

Conversion is easier when no unusual tricks are added
to the program, when standard programming languages like
Federal Standard COBOL and FORTRAN are used, and when no
vendor extensions are added to the standard languages.
Writing programs in the lowest possible level of FIPS 21-1
COBOL is a good beginning in making a system easier to con-
vert. Note: Ensuring portability in this manner may re-
quire foregoing the use of more powerful features of COBOL.

In the next chapter we will address the detailed phases
involved in the conversion process.

-8-

2. THE CONVERSION PROCESS

In order to have a smoothly running conversion, techni-
cal and management problems must be overcome. Many of the
conversion companies that were interviewed consider the
management of the conversion process as the most difficult
problem in conversion.

The following discussion concerning the process of
conversion is actually descriptive of recoding. When repro-
gramming is the technique used to accomplish the conversion,
and significant changes do not have to be made to the pro-
gramming logic, then, generally, recoding is done first,
followed by the changes. This technique is used to minimize
the introduction of errors at critical points in the conver-
sion which can be very difficult to remove.

The process of converting operational programs from one
machine to another challenges, educates, and frustrates.
Conversion challenges and educates because technical prob-
lems arise which require solutions. Problems occur, in large
part, because of the singularity of the conversion experi-
ence which only occurs, for an installation, once or twice
in a decade. In many cases, no training has been given to
inexperienced personnel for solving these problems. Conver-
sion experiences can be unique, and some of the techniques
developed to solve the problems may be used only once.

Conversion frustrates because of a misunderstanding of
the conversion process, the resources and time required, and
the uncertain priority of conversion in an organization's
data processing environment. Many programmers view conver-
sion as a relatively undesirable activity, perhaps even
worse than maintenance. Certainly, conversion does not ap-
pear as challenging or rewarding as new design and implemen-
tation .

The conversion process can be described in six phases:
planning, data preparation, translation, unit testing, sys-
tem testing, and parallel testing. The basic ideas of the
phases of conversion and some of the figures describing each
phase were obtained from publications of Rand Information
Systems [19].

Planning Phase

Planning is the process of identifying and documenting
computer systems, programs, and data files that operate on
the source computer system, and making a determination as
to their future status on the new computer system. In

-9-

addition, planning includes the decision as to how the tran-
sition to the new computer system should be made.

A detailed and accurate picture of the existing comput-
er resources is a necessity. Each system, each program
within each system, and each data file for each program must
be documented. Each system documentation should include all
data flows into and out of each system. Each program docu-
mentation should include the programming languages used and
the number of lines of code of each programming language.

The data files should be similarly analyzed by docu-
menting each file, the number of data records per file and
the number of characters per record. In addition, documenta-
tion of the data record layouts for each file should be in-
cluded.

The frequency of use of each system, program, and data
file should be captured and documented. Programs and data
files can then be assigned priority numbers for the conver-
sion or be eliminated altogether. The techniques that can
best accomplish the conversion (recoding, reprogramming

,

redesigning), and the tools that could aid, should be iden-
tified .

Estimating the manpower, computer resources, and time
necessary to accomplish the conversion is not an easy task.
Therefore, a prototype conversion is recommended, in which a
representative sample of the programs to be converted is
chosen along with the people who will perform the conver-
sion. Once the sample conversion is successfully completed,
rough estimates can be made of the manpower and computer
resources needed for the total conversion. Reference [17]
may be helpful in making these estimates.

Two factors will necessitate adjustments to the parame-
ters derived from the prototype. One is the initial learn-
ing phase which will undoubtedly cause the time estimate to
be high. The other factor is the interrelationship problems
which must be solved when systems are highly interconnected.
The prototype may not be representative of system interrela-
tionships, and consequently, the time estimates derived from
the prototype would be low. Probably the most critical fac-
tors affecting the parameters are the abilities and experi-
ence of the people who will perform the conversion. Conver-
sion is likely to be more successful, and accomplished in
fewer man-hours, when performed by people experienced in
conversion. Experienced conversion people are difficult to
f i nd

.

-10-

After these parameters are obtained from the prototype,
a conversion plan can be laid out with time and personnel
estimates. The conversion can be separated into groups and
scheduled according to priority. Decisions can then be made
as to whether the conversion resources are available utiliz-
ing in-house personnel or whether the conversion would be
better accomplished with outside assistance.

Although the conversion schedule can be compressed to
some degree, it is generally inappropriate to compress the
schedule during the early stages, when the techniques are
being developed. Only when the conversion is progressing
well and the techniques are fully developed will additional
manpower resources be effective. Additional manpower ap-
plied when the project is having difficulty with time
schedules may be counterproductive and destroy the progress
that has been made.

Data Preparation Phase

Data preparation is the process of gathering all the
materials that will be used in the conversion. It is impor-
tant that the data preparation team have well-defined in-
structions about the types and sequence of information to
gather, and the ways in which to prepare the conversion ma-
terials. The information gathered in the planning phase is
used to assure that all the inputs to the conversion process
(program source listings, input files, record layouts, and
documentation) are ready for the conversion. Test data must
also be generated to assure that adequate testing and vali-
dation will be performed on the converted system. See Fig-
ure 1.

Test data, that can exercise at least 70% of the pro-
gram code, should be generated on the source system.
Although the study of testing is currently still in the
research stage, the 70% figure is regarded by conversion
specialists to be a reasonable rule of thumb. It is desir-
able to keep the input test data riles as small as possible,
while still providing adequate testing. A 150,000 character
test file is generally considered small enough to yield ac-
ceptable run times for the converted program, and still be
representative of data that can test 70% of the code. Tools
which insert code in a source program for automatically
gathering run-time statistics are available. One example of
such a tool can measure the percentage of lines of code
which have been executed on both the source and target sys-
tems.

-11-

Gather
Necessary

Materials

Prepare
Input
Data
Files

Compile and
Execute
Source
Programs

Measure
Execution
Percentage

Figure 1: Data Preparation Phase

- 12 -

The alternatives to using a tool that can measure per-
centage of code execution are either estimating the percen-
tage of code execution or using the existing production
files for test data. Existing files may be quite large.
Neither alternative appears to be as effective as a reason-
ably sized test data file that is known to test 70% of the
code, or more.

Listings and test data files are needed for all inputs
and outputs for each program. Later in the testing phase,
the outputs of each program on the target system will be
matched against the outputs of the source system to test and
validate the conversion.

After assuring that the test files test an acceptable
amount of the code, each source program must be recompiled
and run with the test files. All the information pertinent
to this execution (i.e. source program listing, all input,
output, and intermediate files) must be captured on tape.
It is best to write all the information for each program to-
gether on a tape. Keeping all the information for one pro-
gram together provides good control of the conversion ma-
terials. These "stacked tapes", together with documentation
such as listings and console messages, comprise the data
preparation input package.

Translation Phase

The translation phase is what many people consider the
essence of conversion. The materials prepared in the data
preparation phase are now used along with the conversion
plans from the planning phase to perform the translation of
the programs, data, and documentation to the new computer
system. See Figure 2,

In the translation phase each source program must be
translated to run on the target machine. The translation
phase is usually done on the new computer system or one very
close to it. This translation can be accomplished in part by
automated tools and in part by manual corrections. One au-
tomated tool, called a translator, uses the old source pro-
grams as input and produces new programs whose source code
is compatible with the target computer. Generally, automat-
ed tools will not make all the changes required. Manual
changes are also needed, and in most cases take up most of
the translation phase time.

-13-

Data

Preparation
Materials

Automated
Translation

1
Prepare
Record
Definitions

Initial
Target
Program

Prepare
Code
Corrections

Modify
and

Compile

No

Review
Manually

Target
Program

File
Conversion

I
rTarget

Data

Job

Control
Language

Documentation

:

Console MSGS,
Listings

Figure 2: Translation Phase

- 14 -

The data files consisting of the input test files and
output files must be converted to the target machine.
Changes in character code and file format are done here.
File conversion tools are very helpful in performing this
conversion. Job control language commands are needed to run
any automatic translators and file converters. These com-
mands must be produced in this phase, along with the job
control language commands needed for each program. Program
and file listings are also produced. One set of documenta-
tion is produced after the automatic translation and file
conversion, and an updated set is produced after manual
corrections are made.

The programs are compiled, manually corrected, and
recompiled until a clean compilation results. In many cases,
a change in a version of a compiler or operating system can
affect the compilation or execution of the translated pro-
gram. Next, a desk review is performed with two people, one
on the original source and one on the translated result, to
assure that the changes are correct. The target program and
the target format data (input and output test files) along
with the the job control language commands are passed to the
next phase - the unit testing phase.

Unit Testing Phase

The objective of the unit testing phase is to compile,
execute and test each target program with its test data and
to match the resultant execution output files with those
produced on the source computer. See Figure 3. The test
data (including input, intermediate, and output test files)
were converted to the target format in the last phase. The
intermediate and output files of each program are matched
against those equivalent files created on the source com-
puter. File comparison tools are very helpful here. Code
corrections are applied where needed, and the program is
recompiled and executed until the output data matches the
source system output test data.

Every converted program is tested and corrected in this
manner. The programs are monitored to assure that 70% of
the code is executed. If 70% of the code is not executed,
additional test data may be generated. The remaining code
that is not tested is desk checked.

-15-

Prepare
Code
Corrections

Modify

5

Compile

,

Execute and
Test

Compare
Output Data
to Test Data

Figure 3: Unit Testing Phase

- 16 -

System Testing Phase

The system testing phase continues the testing beyond
the unit test. See Figure 4. The interactions of the vari-
ous programs which form the system are now tested. In the
system test, the job control language commands necessary to
execute each system are developed. The programs are com-
piled and executed as a system. The outputs are compared to
the test outputs of the source system. If errors are
detected, appropriate corrections are made to the code,
data, or job control language commands. The programs are
recompiled and re-executed until a perfect execution and
comparison is accomplished. If required, the system may be
sent back to the unit testing phase.

Parallel Testing Phase

After system testing is completed, parallel testing be-
gins. See Figure 5. The production job control language
commands are prepared and the production files are convert-
ed. The system is updated to incorporate production mainte-
nance changes made during the conversion. The programs are
compiled and executed and the outputs are compared to the
existing production system. The process of code correction,
compilation, and execution is continued until the system
has a perfect execution comparison. The new system contin-
ues to run in parallel with the source system until produc-
tion cutover.

-17-

Prepare
System Testing
Job

Control

Prepare
Code
Corrections

Modify
Compile

,

Execute and
Test

Compare
Output Data
to Test Data

ure 4: System Testing Phase

- 18 -

Prepare
Parallel
Testing
Job
Control

Production
File
Conversion

Compare
Source

Apply
Maintenance
Changes

Apply
Code
Corrections

Modify
Compile

,

Execute and
Test

Compare
Output Data
to Test
Data

'roduction
Tested
Programs

Figure 5: Parallel Testing Phase
- 19 -

3. DATABASE MANAGEMENT CONSIDERATIONS

The batch file environment is by far the most prevalent
computer system environment undergoing conversion today.
Many of these computer systems that are undergoing conver-
sion were first installed fifteen years ago and longer.
Consequently, the viewpoint of the people interviewed, and
the suggested techniques for handling conversions, are most-
ly oriented toward batch file environment systems. Future
conversions will in all probability be more concerned with
increasingly complex systems, such as those involving data-
base management systems (DBMS) . A conversion study would
not be complete unless it discussed some of these technical
advances which are being used in developing today's systems.

Database Management Systems

Some general characteristics of DBMS ' s are that they
are proprietary, written in assembly language, optimized
for a particular hardware/software environment, and incompa-
tible with other DBMS syntax and semantics. These charac-
teristics form massive technical and contractual barriers to
converting the DBMS itself to the target system.

The vast majority of commercially available DBMS's
operate on a single vendor's hardware system. There are
presently only a few exceptions. One database management
system runs on ten different hardware systems, one system on
three hardware systems, and a few on two hardware systems.
However, in general, when moving a system, which utilizes a
DBMS, from one environment to another, the degree of diffi-
culty of the conversion is increased compared to moving a

system which does not utilize a DBMS, The major reason for
this increased difficulty is that incompatibilities exist
among different DBMS's. The syntax and semantics used for
one DBMS are not acceptable to another DBMS.

DBMS's, in general, have different data definition
languages, data manipulation languages (COBOL, FORTRAN, and
other higher level languages) , and query languages. Except
in those cases where the same DBMS is implemented on several
different hardware systems, many programming changes are re-
quired in order to accommodate the target DBMS. Further-
more, redesign techniques are usually necessary with the
target DBMS application in order to provide adequate perfor-
mance.

Data Definition

-20-

DBMS's support three major data views or models: net-
work, hierarchic, and tabular (relational). A network
structure is a more general data structure than a hierarchic
structure. If the target DBMS data definition language and
data structure is at least as general as the source DBMS
data definition language and data structure, then the data
definition conversion will be easier. Translation tools
have been used to translate portions of one data definition
language to another. However, in most cases the process is
done manually.

Data Manipulation Language

Various DBMS's provide different levels of Data Manipu-
lation Language (DML) capabilities. For example, a DML
statement in one DBMS is only capable of selecting at most a
single record, while a DML in another DBMS can select 1000
records. Converting programs between these DBMS systems is
much more involved than the simple replacement of one DML
statement for another. Additional code is needed to form
equivalences between the two DMLs. Specialized automated
tools have been used in translating portions of one DML to
another DML. However, no general tools are available, and
tools that are available generally are not capable of doing
major portions of the work. Developing general solutions to
the DBMS program conversion problems must be considered an
area of present and future research.

Query Language

Many DBMS's offer the users the capability of writing
predefined programs in an English-like language and invoking
these programs with parameter substitution. This capability
is usually an extension of the query capabilities offered.
These predefined programs must be rewritten since little
commonality exists among DBMS query languages or predefined
programs.

Data Conversion

In a database environment, all aspects of the conver-
sion create some special difficulties. However, data
conversion has its own set of problems. The data in a DBMS
is structured. The logical structure of the data, which can
be network, hierarchic, or tabular (relational), must be
represented in some linear representation on tape for most
conversions. There is no present standard or procedure for
representing structured data in a linear fashion. Present-
ly, vendors represent their data in a unique manner which
would be of little or no use to another DBMS. Moving from a

network to a hierarchic system, for example, leaves open
questions as to how the network would be represented in the

-21-

less complex hierarchy. This representation is generally
done via redundancies in the hierarchic structures. Problems
occur whenever more complex structures are mapped onto less
complex structures because either structural information
that cannot be directly modeled in the new DBMS must be
dropped, or the information must be represented in a way
permissible but not necessarily desirable in the target
DBMS.

Effectiveness

For a DBMS to be effective, it must closely support the
application, and make efficient use of the hardware/software
environment. Therefore, most DBMS conversions are generally
redesigns. Different data definitions, physical access
methods, or additional indices may be required to keep per-
formance at an acceptable level and to maximize
hardware/software system utilization.

Conversion from a manual environment, file environment,
or DBMS environment to a DBMS environment relies heavily on
all the techniques, knowledge, and good management necessary
to establish a DBMS successfully in an organization. Good
database management techniques rather than good conversion
techniques seem to dominate. Some good management tech-
niques described in the Data Base Directions Report [2]
are

:

Establish review points

Involve end users

Keep the scope reasonable

Encourage a prototype

Shift responsibility to the DBMS experts

Phase the implementation

Don't be the first to use a new technology

Get adequate management commitment

Select an important portion of the ultimate system
and have visible results in four to six months

Provide adequate training for your technical staff

-22-

* Orient and educate your users

* Implement a data dictionary/directory

* Obtain help from the DBMS and hardware vendor

Despite the problems a DBMS creates in the conversion
process, there are many advantages in using a DBMS. With a

DBMS the user can carry analysis to new levels of sophisti-
cation which were considered too difficult or unreasonable
in a file environment.

In a conversion that involves a DBMS, personnel re-
quirements are much more stringent. A complete understand-
ing of the target DBMS and its peculiarities is required.
Adequate training in the target DBMS is a necessity, and
those who were not trained in DBMS concepts previously may
feel threatened by the change.

After hearing the special problems involved in DBMS
conversion, one might wonder why users would want to utilize
a different DBMS while retaining the same hardware/software
environment. In the Data Base Directions report [2] some
reasons for this change were given:

* Improved functions (more complete)

* Better performance

* Improved query capability

* Development of richer data structures

* More efficient usage of the computer resources
through decreased cycles and/or space

* Improved or added communication functions

* Availibility of transaction processing

* Distributed processing capability

* Abandonment of a complex data structure

Summary

A DBMS environment can significantly increase the dif-
ficulty of conversion. For example, a conversion that in-
volves COBOL programs utilizing a DBMS can be as much as ten
times more costly than conversion involving solely COBOL
programs in a file environment. General DBMS conversion

-23-

tools do not exist. The general solutions to DBMS program
conversion problems are still in the research stages. The
technology to assist with DBMS data conversion problems ex-
ists, yet no common data interchange forms are available.
DBMS conversion in general has not reached the level of re-
finement that a COBOL to COBOL file environment conversion
has achieved.

There are many DBMS's available in the marketplace with
little commonality among them. Conversions involving a DBMS
require significant knowledge of the target DBMS. However,
additional capabilities provided by the DBMS in many cir-
cumstances outweigh the increased problems it causes in
conversion.

-24-

4. CONVERSION EXPERTS AND TOOLS

In order to get an implementor ' s perspective on conver-
sion, NBS interviewed four companies specializing in dif-
ferent aspects of conversion. These companies will be re-
ferred to as A, B, C, and D.

4,1 Company A

Company A employs under 500 people. About 100 people
work on conversion projects. Company A has performed
conversion services for several Federal agencies.

Company A prefers to do as much work as possible on
their own premises in order to control the environment.
They have their own computers, and will rent time on target
computers that they do not own. They offer fixed
price/fixed schedule contracts and provide a warranty for
the completed package. For a typical job. Company A will
perform all of the translations and unit testing and will
assist the client with the planning and data preparation.
The client performs the remainder of the effort.

Company A feels that management problems are more dif-
ficult than technical ones. Management considerations in
conversion involve:

controlling large volumes of materials

coordinating 20 to 40 runs/program

ensuring quality and standards

limiting operational overhead

minimizing parallel costs

maintaining good morale

training

Company A'£ Working Environment

The organization of Company A's conversion team is very
structured. This rigid structure is characterized by spe-
cialized assignments for each individual, and productivity
statistics about each programmer. Each individual working
on a conversion project has a well-defined and unique piece

*

-25-

of the conversion assigned to him. He is concerned only
with his piece and knows little of the overall conversion
effort or strategy. He is not only logically, but physical-
ly removed from the rest of the team working on conversion,
since each member of the team works in his own individual
cubicle. Interaction and communication among members of the
team are not encouraged. Batch, rather than interactive
processing, is encouraged since machine down time in an in-
teractive mode leads to lost productivity.

Company A's Conversion Philosophy

Company A considers that the source code for the pro-
grams to be converted and the data files constitute the in-
put to the conversion process. Program documentation is
neither required nor desired by Company A. Comments within
the source code are disregarded. In most cases. Company A
considers an understanding of the source program unnecessary
for them to perform a conversion.

Some other thoughts by Company A which give some in-
sight into their philosophy are listed below:

* The biggest problems in converting COBOL programs
involve differences in file structure, differences
in syntax, and different collating sequences.

* FORTRAN programs are much more difficult to convert
than COBOL programs. The author (s) or ind iv idual (s)
responsible for the FORTRAN program must provide as-
sistance to the conversion team for FORTRAN conver-
sions. Precision, which varies due to different
word sizes on different machines, is a major prob-
lem. Difference in word sizes can also cause prob-
lems with respect to the different number of charac-
ters stored in a single word.

* Company A has a complex data base for conversion es-
timates, to which they attribute the high degree of
success they have attained in projecting conversion
costs. The data base is not complete for FORTRAN
programs

.

* Tools can be helpful in conversion, but they are not
an end in themselves. Programmers must understand
what they can do, and the decision as to whether or
not to use a tool must be an economic decision.
There is a need for more general tools that can be
modified for each job.

-26-

Company A defines completion in conversion in terms
of files and program testing, 100% of file conver-
sion must be complete, and 70% of the statements in
the programs must be executed.

Production runs have a negative impact on conver-
sion. Company A controls the situation by bringing
in their own computers.

Performance requirements, such as execution speed,
throughput, etc. are not usual considerations for
Company A, However, if these considerations are in
the RFP, Company A will adhere to them.

Agencies undergoing conversions should have an up-
to-date test file which can be used during the test-
ing phase of conversion.

4.2 Company B

Company B employs approximately 500 people. Twenty per-
cent of Company B's resources are used for management con-
sulting, 40% for programming at the customer site and 40%
for performing conversions. Company B said that they would
not bid on Government RFP's because the Government is un-
realistic about what they expect to get within a fixed
length of time and the Government is lacking in expertise to
evaluate the quality of the code produced. Additionally,
Company B feels that the people problem in conversion is
very difficult in the government. Government employees are
not willing to face up to conversion because they are
unwilling to face change.

Company B '£ Conversion Philosophy

Company B's conversion philosophy is quite different
from Company A's, Company B seems to emphasize a level
above 1 ine-for-1 ine conversion. Their emphasis is on quali-
ty control and they claim that their converted programs are
more maintainable and readable. Company B believes that
variable and procedure identifiers, as well as statement la-
bels, are easier to maintain if the names are understandable
rather than coded. They maintain their own internal pro-
gramming standards to which their programmers adhere. They
emphasize documentation and aim to produce user documenta-
tion along with the converted software. Company B defines a

successful conversion as follows:

a technical operating environment moved to

-27-

another machine with little break in functioning
and leaving it in an enhanced state."

Company B employs programmer/analysts, rather than just
programmers. People working on conversion interface with
the project as a whole, all the way from design through im-
plementation. This is in marked contrast to Company A,
where each individual working on conversion is concerned
only with the segment which has been assigned to him.

Company B offers the following sequence for a conver-
sion:

* Do a conversion study.

Develop contingencies.

Delineate scope of project.

Perform a technical survey - note hardware,
proprietary software, line counts, languages,
programs. Note: Company B either does the
survey itself or trains customers to do the
survey.

Identify conversion alternatives.

Define factors - What it takes and how much
complexity.

Run through estimation modelling program.
Note: Company B owns a proprietary program to
do this job.

* Estimate time/cost.

* Produce alternative summary.

Company B will perform benchmarks at a cost of less
than $50 per program before contracting a conversion job.
The benchmarks are limited to 10 representative programs of
the complete job. Two average programs, two easy programs,
and two of the most difficult programs in the system must be
included within the 10 representative programs.

Company B believes that the following must be con-
sidered before buying a new system:

* Longevity of hardware.

-28-

* Cost of conversion.

* Applications.

* Maintainability.

Company B's thoughts about conversion:

* Freeze program for language translation.

* Character set changes are difficult.

* Autocoder should be rewritten, not translated.

* Some compilers have extensions which make programs
non-standard

.

* Do not let hardware vendors do conversions.

* Fixed price conversions are dreadful.

* Compare costs for contracting with a vendor and with
another government agency.

* About 70% of conversions today involve COBOL (to and
from) .

* A conversion might reveal serious bugs in a program
which can be very embarrassing to the customer.

Company B'£ propr ietary tools are :

* Translators -

RPG to COBOL (full ANS COBOL on any computer)
DOS COBOL to OS COBOL
DOS ALC to OS ALC
360 BAL to 360/370 OS ALC
SYSTEM 3 COBOL to OS COBOL

* Ut il i ty software
Blocking/deblocking records
File matching

-29-

4 . 3 Company C

Company C visited NBS to present its view of conver-
sion. Company C provides a wide variety of services includ-
ing consulting, systems design, programming support and
conversion services. They define software conversion to be
"the total migration of an automated data processing system
from one computer's hardware and operations environment to
another, including: software, data base files, job control
language, and operating procedures," Company C contrasts
software conversion with software development by pointing
out that software conversion entails: a different
technical/management relationship, a different operating en-
vironment, different staffing considerations, and different
r isks

.

Company C_* s Conversion Ph i losophy

Company C breaks down the conversion process into three
distinct stages: conversion planning, workload conversion,
and production testing. Each of these stages is, in turn,
broken down into more specific stages. The percentages of
time shown are those experienced in the company's latest
conversion project.

* Conversion Planning (26%)
.Development of Conversion Plans (8%)
.Preparation of Conversion Work Packages (2%)
.Ensure 100% COBOL/FORTRAN (1%)
.Test Data Preparation and Validation (15%)

* Workload Conversion (54%)
.Software Translation (3%)
.Clean Compile (10%)
.Unit Test (20%)
.Production Preparation (7%)
.Systems Test (10%)
.Production Data Conversion (4%)

* Production Testing (20%)
.Insert Maintenance Changes (2%)
.Full Systems Test (6%)
.Parallel Operation (10%)
.Production Cutover (2%)

Company C concentrated on the procurement aspect of
conversion more than did other software firms with whom we
spoke. They presented a plan detailing the suggested cri-
teria one would use to evaluate proposals for conversions.
Their evaluation criteria were broken down into the follow-
ing categories:

-30-

Personnel Qualifications - 30 points
.Relative Experience of Project Team - 20 points
.Mix of Skills of Proposed Personnel - 5 points
.Relative Experience of Project Manager - 5 points

Experience of Firm and Corporate Management - 20 points
.Degree of General Corporate Experience in Software
Conversion - 10 points
.Level of Management Participation in the Conversion
Project - 5 points
.Quality, Extent, Depth and Variety of Prior
Experience - 5 points

Technical Approach to the Statement of Work - 35 points
.Degree of Use of Conversion Aids Proposed - 10
points
.Conceptual Soundness of Approach - 10 points
.Schedule and Plan to Implement the Approach - 10
points
.Use of Project Management Techniques - 5 points

Responsiveness and Thoroughness of Proposal - 5 points

Innovative Approaches in Proposal - 10 points

4.4 Company D

Company D's views were solicited because of their ex-
tensive experience in developing tools to aid in language
translation.

The following describes automated tools developed by
Company D for use in language translation:

* A meta-language translator - a machine- independent tool
for developing language processors. This is a proprietary
program which has been used by a government agency with non-
disclosure provisions. A meta-language (a modified BNF) is

used for inputting the syntax and semantic primitives of the
host language. The meta-language translator can be con-
sidered a building tool for language translators or a tool
to develop a tool.

* A meta-language assembler - developed under contract with
a government agency for translating one assembly language to

another assembly language.

* A program evaluator and tester - used to validate a

-31-

converted system. It assists in debugging, testing, and
documenting FORTRAN programs by inserting code for automati-
cally gathering run time statistics. The program evaluator
and tester flags conversion problems, such as differences in
word size.

* A tool for developing a language to analyze operating
performance - like the meta-language translator, this tool
is a language translator builder.

* A high order language evaluation tool - checks behavior
of language constructs during program development.

* A high order language definition language - a meta-
language to provide a medium for expressing the following:
definitions of high order language words for inclusion in a
dictionary, information on syntactic order and precedence,
information to establish proper binding of words, and seman-
tic information for code generation.

The most difficult problems encountered by Company D in
translation are listed below:

* Multiple assignments - e.g., A,B =C

* Differences in the value of loop variables on exit from
the loop after N iterations.

* Different scoping rules.

* Mixed mode expressions.

* Different operator sets.

* Different rules of precedence.

* Differences in data structure - e.g., I's complement vs
2's complement.

* I/O differences.

* Reserved words in target language used as variable names
in the host language.

* Different character codes.

* Different collating sequences.

* Algorithms which are required to handle semantic differ-
ences.

* Lexical differences - can be especially difficult when a

-32-

one-to-one correspondence does not exist.

* Structural differences (e.g., PASCAL'S rigid block
structure) can cause problems.

Company D feels that syntax differences are the easiest
to solve.

-33-

5. FEDERAL GOVERNMENT AGENCIES: CONVERSION EXPERIENCE

A vitally important perspective on Federal Government
conversion problems can be obtained from Federal Government
agencies who have undergone a large scale conversion. In
each case described below, the agency was very candid and
helpful in describing its conversion experiences. Many of
the results of the agencies' conversions were not totally
satisfactory, yet each agency was willing to share its
failures, as well as its successes, in order for other agen-
cies to benefit from its experiences.

It should be noted that although the agencies' files
contain confidential information and are vulnerable to
theft, the extent of their software security techniques is
not enough to cause any concern for the conversion process.
Passwords and authorization lists (read only, write only,
etc.,) are used. Other than that, the implemented security
measures are physical.

This chapter identifies computer hardware systems as
necessary by their trade names to provide an understanding
of the conversion effort. This identification in no case
implies a recommendation or endorsement by the National
Bureau of Standards.

Summaries of the experiences of three different agen-
cies follow. These agencies will be referred to as A, B,
and C.

5.1 Agency A

The history of changes that occurred in Agency A's com-
puter resources is probably typical of changes that took
place in most Government agencies during the 1960's and
1970 's. Agency A entered the computer field near the end of
the 1950's after acquiring a small scale computer. In the
early 1960's, an IBM 1401 was acquired to replace the origi-
nal computer. By the middle of the 1960's, two
hardware/software systems similar to the IBM 360/370 archi-
tecture were acquired. These computers were the source com-
puters in their recent conversion described below. Old ap-
plications were converted from machine to machine, and in
many cases improved. New applications were added.

By the middle of the 1970 's, four large application
systems were running on the two source computers. These
systems were high volume batch file systems, utilizing mag-
netic tape and sequential file processing. Very few data

-34-

were stored on disk. These systems were very similar, in
many cases, to the original designs that were made for the
IBM 1401.

As time passed. Agency A found that their computer
operations were exceeding the capacity of their
hardware/software system. In addition, the hardware vendor
was no longer maintaining these machines. The computer sys-
tem had become obsolete.

Plans were formulated to upgrade the hardware/software
environment to take advantage of the latest technology. In-
teractive processing and a database management system were
elements of the new plan. A Dual Honeywell Series 60 com-
puter was purchased at a cost of approximately two million
dollars. It was estimated that it would take three years to
make the existing application systems operate on the new
hardware

.

Agency A found themselves in a very difficult situa-
tion. The application system they possessed needed to be
redesigned, but they did not have the manpower to convert
the system or even to prepare specifications for the desired
redesigned system. Functional specifications did not exist
for the source system, and documentation was not complete.
These circumstances forced Agency A to contract out for the
conversion effort, with recoding as the chosen conversion
technique. Agency A planned to redesign the system with
in-house personnel after the conversion contract was com-
pleted.

Planning For The Conversion

The following steps were taken early in 1975 to plan
the conversion from the source computer to the Honeywell
Series 60:

* An inventory was taken on all subsystems - program
names, functions, file sizes, record layouts, utili-
ty programs, interface programs, etc. were document-
ed.

* Primary users were consulted for comments on output
and where the output could be improved.

* RFP's were prepared, which included:

Number of lines of code by programs.

-35-

The number and types of files.

The kinds of utilities required.

Source code.

File formats.

It should be noted that neither the RFP's nor the con-
tracts specified the operating efficiency of the final pro-
duct. This turned out to be a mistake since a translator is
not geared to fine tune the logic of the program in order to
increase efficiency. The use of translators to perform the
majority of the code conversion dramatically increased the
size of the programs. One reason for this increase in size
is that the source computer is character-oriented and the
Honeywell is word-oriented. Logical data (yes/no) which re-
quires eight bits in the source computer (one byte) was con-
verted to a full word on the Honeywell. In general, charac-
ter processing on a word-oriented machine is very ineffi-
cient. Program efficiency, however, could have been
guaranteed if the contracts had included execution time con-
straints, and other performance characteristics.

Two companies were given contracts to convert portions
of the application system. The first contractor was to con-
vert 37 smaller systems, including the payroll system, at a

cost of $150,000. The majority of these programs were in
COBOL, with about one-third being written in assembly
language. Approximately 100,000 lines of code constituted
the 37 systems, making the cost for converting a line of
code less than two dollars.

Two separate contracts were awarded because there was a

logical break in the conversion work, with the second job
being extremely large and significantly different. The com-
pany awarded the second contract, having had much experience
in large conversion efforts, was better able to perform the
second job. Information pertaining to the conversion under
the second contract follows.

Second Contract

This job alone contained 4 million records which were
stored on approximately 1500 reels of magnetic tape. The
source system encompassed some 650 files, containing about
90 different formats. File and display formats had to be
reformatted, necessitating changes to programs. The source
code consisted of some 270,000 lines of ALC and 150,000
lines of COBOL, some of which was code which could never be
executed. About seven agency staffers prepared the test
data, a task which took one and a half years to complete.

-36-

The terms of the contract included the following:

* The contract was to run for three years.

* The company had translators which converted directly
from the source machine to the Honeywell Series 60.
They also had translators which converted from the
source machine to the IBM 360/370 as well as trans-
lators which converted from the IBM 360/370 to the
Honeywell Series 60. The company chose to utilize
the two-step approach of converting from the source
machine to the IBM 360/370 and then from the IBM
360/370 to the Honeywell Series 60. First, all code
(assembly and COBOL) was converted to COBOL from
the source computer to the IBM 360/370. The second
step was a conversion from the IBM 360/370 (COBOL)
to Honeywell Series 60 (COBOL) . The conversion was
to be performed at the contractor's home office.

* The contractor was to modify and optimize (e.g. el-
iminate excess passes through the files) the pro-
grams after the conversion.

* For testing, a criteria of 70% code execution was
established

.

Amendments had to be added to the contract as time pro-
gressed. Because of the ramifications of the line-to-line
conversion from the assembly language to COBOL, the convert-
ed system took 40% more time to execute than the old system.
Since the contract made no reference to execution or turn-
around time, the contractor could not be held accountable
for the poor efficiency of the converted system.

The costs for this contract are summarized below:

366,000 optimization
28,000 systems analysis

1,192,000 actual conversion
82,000 Implementation support on-site

$1,668,000

100,000 Installation and maintenance

$1,768,000 Total

In addition to the above costs, labor costs were in-
curred by ten agency employees working on the project for
two years.

New Procurement

-37-

The magnitude and ramifications of the conversion ef-
fort were underestimated by Agency A. The converted system
took 40% more time to execute than the old system. Some-
thing needed to be done since the capacity of the Honeywell
had been exceeded. Rather than augmenting their Honeywell
computer by adding greater capacity in the form of more
memory or faster peripherals. Agency A has recently opted to
procure a new computer to alleviate the problem of a sa-
turated hardware/software system. Agency A feels that this
acquisition will subsequently make the Honeywell system
available for other useful purposes.

Agency A Recommendations and Comments

The following are the recommendations and comments from
Agency A personnel, based upon their experiences in this
conversion effort, and do not necessarily reflect the au-
thors' opinions:

* Technical expertise should be available in the
Federal government to assist agencies.

* Top management always underestimates the scope of
effort required for a conversion.

* Contracting out 100% of the conversion is not possi-
ble. Only about 30% to 40% of the work can usually
be done via contract. The remainder of work is done
in-house, and consists of the most difficult tasks.

* Some factors causing their problems were:

Application systems were up to 10 years old.

Systems were poorly documented.

Many changes in system design, which were not
reflected in the system documentation, were
made over the years, making the programs diffi-
cult to modify and convert.

Agency personnel did not have detailed
knowledge of the application systems.

Contractors were not familiar with the system
f unct ions

.

-38-

Moving from a character oriented computer to a
word oriented computer created horrendous prob-
lems during file converrsion.

New development is better done in-house.

Administering, monitoring and testing are important
tasks

,

Although Agency A has language standards, they still
use vendor's extensions.

Database management systems, similar to an end-user
oriented and an inverted file type, should become
standard

.

Standards on the data element level would be useful.
Definition of elements should be consistent.

Hardware costs are easier to estimate than software
costs

.

The magnitude of the conversion effort was underes-
timated .

Contracting out a conversion may cause a moratorium
on modifications to the system.

Conversion is a specialty, a unique talent.

5.2 Agency B

Agency B underwent a conversion of a large batch finan-
cial system. Agency B personnel who were responsible for
the conversion did not understand the reason for the conver-
sion. Their application programs, written in a mixture of
COBOL and assembly language, were successfully running on an
IBM 370 Series. Even more puzzling to Agency B personnel
was the new hardware for the target system - a Honeywell
Series 60, which was estimated to be 3 times slower than the
IBM computer it replaced.

Agency B had about 200 programs consisting of approxi-
mately 600,000 lines of code. About seven percent of the
code was assembly language. Like Agency A, the original
programs were written many years ago (approximately twenty),
have many patches, and have evolved from several conversions
and additions from previous years. Because most of the

-39-

staff members were new to the agency (a typical characteris-
tic of computer groups today) , the people interviewed were
only knowledgeable of the most recent conversion, which is
discussed below.

A lack of personnel and a short time frame allotted for
the conversion caused Agency B to contract out for conver-
sion services. The RFP went out with the intent of awarding
? fixed price/fixed schedule contract. The contractor was
to supply the following:

* The guidelines for the data preparation phase, which
was to be performed by Agency B.

* Translations, using their proprietary translators to
convert from the mixed COBOL 68 and assembly enviro-
ment to COBOL 74 on the target machine.

* Comprehensive testing of the system.

The contract was awarded, and in early 1978 the con-
tractor began the conversion effort. The contract called
for the conversion of all the programs first to COBOL 68 and
then from COBOL 68 to COBOL 74. However, the translator to
convert directly to COBOL 74 became available prior to the
translation phase, and was, therefore, used. The programs
were delivered in stages between the middle of 1978 and the
early part of 1979. The total cost of the contract was $1.8
million (approximately $3.00 per line of code).

Problems Encountered Pur ing The Conversion

Agency B performed the data preparation, which turned
out to be a horrendous job. Documentation for the source
system was not available, and most of the programmers were
new to the agency and unfamiliar with the programs and
files. In addition, the guidelines on data preparation pro-
vided by the contractor were inadequate.

Because of the difficulties encountered in the data
preparation. Agency B was three months late in turning over
the materials to the contractor (program source listings,
input files, output files, and source programs on tape)

.

This slippage in time caused the vendor to delay the comple-
tion date. The vendor has asked for additional payments be-
cause of this delay.

Results Of The Conversion

-40-

The conversion was completed by the contractor. Howev-
er, the converted system ran ten to fifteen times slower
than the source system. Consequently there were not enough
hours in a day to run the converted system. Part of the
reason for the increased running time was the difference in
hardware speed - the target computer was 3 times slower than
the source computer. Another major reason was the ineffi-
ciencies caused in converting assembly language programs and
their files to COBOL programs and COBOL files. A major
cause of the inefficiency was the input-output processing.
In the assembly language version variable length records
were moved in blocks of 3000 characters. Equivalent COBOL
statements moved data one character at a time.

Testing was also a problem. The small representative
test files proved to be inadequate in testing. When the
production data was run through the programs, new errors
were found. For this reason Agency B used the production
files for test files, as well as for maintenance purposes.

Because the contractor's staff worked at their own
headquarters and not at the same site as Agency B's staff,
communication problems developed. The contractor used a

slightly different version of the hardware vendor's
software; the difference caused problems during installa-
tion. Many of these problems were aggravated by the ex-
tremely large size of Agency B's programs.

Another problem occurred in job control language.
There was no direct correspondence between job control
language on the IBM and Honeywell systems. For example, one
cannot concatenate files on the target operating system. In
some cases. Agency B had to write software to perform func-
tions that the operating system performed on the source
machine

.

Agency B Recommendations And Comments

The following are the recommendations and comments from
Agency B personnel, based upon their experiences in this
conversion effort, and do not necessarily reflect the au-
thors' opinions:

* Avoid conversion when possible. A conversion should
only be attempted when time and resources are avail-
able.

* Data preparation, translation, and testing should
all be done at one site.

-41-

* Consideration should be given to the tradeoffs
between transportability and efficiency of the
resultant code.

* Assembly language programs should be converted to
assembly language programs.

* There is an uncertainty that generalized tools are
the complete answers for conversion problems. To be
useful, tools have to be very specific.

* The target machine's compiler and operating system
should be thoroughly tested. Newly released ver-
sions of software are dangerous, and cause problems
in conversion.

* If possible, let the vendor do the data preparation.

* Before a job is declared complete, the testing
should be thoroughly done.

* A fixed price/fixed schedule contract is not recom-
mended .

* The RFP should require volume testing and timing
tests as part of the acceptance criteria.

Agency B also recommended the following standards or
guidel ines

:

* Data preparation guidelines

* Programming standards for structured program design

* Programming standards for efficiency

* Guidelines for performance tuning and optimization

* Guidelines for choosing between recoding and
redesign conversion techniques

* Guidelines for preparing an RFP (Request for Propo-
sals) . It is important to write the RFP properly.
Efficient programs should be included as deliver-
ables. The running time should be specified in the
RFP.

* Guidelines for managing a conversion

-42-

5,3 Agency C

Like Agency B, Agency C also has a large financial
system which underwent conversion. Unlike Agency B, Agency
C's system is on-line and uses a DBMS. In addition. Agency
C's conversion was performed by in-house personnel. The
system was converted from an IBM 370 Series to a Honeywell
Series 60. The database/data communications environment was
changed from a network DBMS primarily used with a
programmer-oriented data manipulation language and its com-
munications monitor to a CODASYL-based DBMS which comes
with its own data communications monitor.

Background

Around 1969 or 1970, Agency C contracted with a private
vendor to develop a pilot program for automating its
records. The pilot program, a totally automatic process for
claims processing, first tied in two city offices with up-
dating capabilities. Three cities were later added with
read only authorization.

By 1976, they were ready to go into full production.
An RFP was issued in two parts, one part for procuring the
mainframe and one part for procuring the terminals. All pro-
ducts were tested (benchmarked) and off-the-shelf. The cri-
teria for passing the benchmark test - response time less
than five seconds - was decided by Agency C. Unfortunately,
because of regulations governing fair competition practices,
they were unable to benchmark the mainframes combined with
the terminals. The contract, awarded in the latter part of
1977, went to Honeywell.

The present system calls for three regional data pro-
cessing centers. Each center is equipped with a dual
Honeywell Series 60 and three front ends for servicing ap-
proximately twenty regional offices. In the summer of 1979,
over 50 cities and 100 minicomputers were added to the sys-
tem. About 50 people oversee the program in Washington,
D.C. To date, they have not yet achieved a stable environ-
ment that would accommodate the full load.

Although Honeywell has a group which performs conver-
sions from various hardware systems to Honeywell, Agency C

opted to do the conversion themselves because of the needed
modifications to the system. About 15 in-house people
trained for the job. For three months at the beginning of
1978, Agency C personnel were sent to Phoenix, Arizona,
where Honeywell is located. They were put in an environ-
ment with no problems and were thus able to work 72 hours
per week on the conversion.

-43-

The conversion involved about 90 programs written in
ANSI COBOL '68 and utilizing the network DBMS. Since most
of the programs were transaction processors, the bulk of the
conversion was from the network DBMS to the CODASYL DBMS.
Honeywell's CODASYL DBMS comes with a teleprocessing sys-
tem, and a query system. The small amount of COBOL requir-
ing conversion was converted manually to ANSI COBOL '74.

Before the machine vendor was selected, an RFP went out
for a conversion tool (isolator or translator) to assist in
converting from the network DBMS to the DBMS that was to be
chosen. The contract was awarded and the translator was
produced. Unfortunately, there was a seven month deadline
for completion of the translation, and the translator was
not ready for use until well into the fourth month after the
start of this task. Hence, much of the the network DBMS to
CODASYL DBMS translation was performed manually. Because of
the tight time constraints for completing the installation
phase of the inquiry subsystem, installation was started on
schedule but before the system was ready.

Agency C converted all the files themselves without ex-
tensive use of specialized tools. Testing and development
were done on the same computers that were used for the pro-
duction runs.

Agency C Recommendations and Comments

The following are the recommendations and comments from
Agency C personnel, based upon their experiences in this
conversion effort, and do not necessarily reflect the au-
thors' opinions:

* Conversion costs should be included in the procure-
ment evaluation. The on-line conversion took 35,000
man hours, of which 10,000+ were overtime hours.

* More time should be allowed for the planning phase.
Because the date of installation was shortly after
the procurement date, there was no time to do things
in a structured, planned, and effective way.

* Much time was spent adjusting the programs manually.

* The programs were more difficult to convert than the
data and data definition portions of the DBMS. Much
of the DBMS work was done by two people.

-44-

Redesign should be concurrent with the conversion.
This takes more time but would result in a more ef-
ficient system.

Design the programs to take advantage of vendor's
equi pment

.

Use off-the-shelf software, not software that is be-
ing developed.

Agencies should do their own conversions in order to
have full control. Vendors have no vested interest
in seeing the system operating efficiently.

Tools were worthless for this job. The people were
more important than the tools. Agency C selected
their best people, who were very dedicated and well
trained in the target computer and in the applica-
tion. The terminal, front end, and TP systems were
not known by everyone.

-45-

6. CONVERSION LITERATURE—A SURVEY

The following summaries of various documents pertaining
to conversion do not constitute a comprehensive survey of
the available conversion literature. However, some of the
more significant documents are summarized in this chapter in
order to provide the readers with a broad perspective of
various aspects in the conversion process. The following
summaries reflect the opinions of the authors of these docu-
ments and do not necessarily reflect the opinions of NBS.

SURVEY OF SOFTWARE CONVERSION AIDS by the US Army Computer
Systems Support and Evaluation Agency [25]

The purpose of this report is to survey the transla-
tors, emulators and simulators that were available in De-
cember, 1975. Translators are defined to include any
software available to translate programs from one language
to another with little or no manual reprog ramming . An emu-
lator is defined as a hardware and software technique for
execution of programs assembled or compiled for a different
computer. A simulator is defined as a software-only tech-
nique to accomplish the same purpose.

The paper begins by summarizing some general software
conversion methods:

1. The programs may be rewritten manually by installation
programmers. This is the slowest and costliest method of
conversion

2. The programs may be rewritten under contract by a
software house.

3. The programs may be emulated in those cases where the
computer on which the programs are to be executed is
equipped with the necessary emulator hardware and software
feature

.

4. The programs, through the use of simulators, may be run
on other computers.

5. The programs, through the use of a translator, may be
converted into the language of other computers.

The remainder of the report deals with the results of
the survey and consists of tables and product descriptions.
The Emulator Cross-Re ference Table shows which computers'
programs can be emulated on other computers. The Simulator

-46-

Cross-Reference Table shows which computers' programs can be
simulated on other computers. The Assembly Language to As-
sembly Language Conversion Table shows which computers' pro-
grams can be translated to other computers. The Assembly to
COBOL Conversion Table shows which computers' assembly
language programs can be translated to COBOL for other com-
puters. The COBOL to COBOL Language Conversion Table shows
which computers' COBOL programs can be translated to another
computer's COBOL. The High Level to High Level Language
Table (other than COBOL to COBOL) shows which computers'
high level language can be translated to another computer's
high level language. The Cross-Assembler Table shows where
some computers' assembly language programs can be assembled
on a different host computer system, and then executed on
the target computer system for which the program was origi-
nally written.

The Other Software Aids Table shows which computers'
data base, file, and library can be translated to another
computer's data base, file, and library. The Product
Description Table describes translators, emulators and simu-
lators developed by the Army, Burroughs, CDC, GE, IBM, NCR,
UNIVAC, and others.

HANDBOOK FOR ESTIMATING CONVERS ION C OSTS OF LARGE^ BUSINESS
PROGRAMS by Paul Oliver [17]

This handbook is intended to assist a manager in making
estimates of conversion costs for large
business/administrative data processing systems. The hand-
book assumes that source programs are in a higher-level
language (probably COBOL) , but most of the procedures are
applicable to any conversion. Useful estimates, according
to the handbook, must include the following factors: cost,
time schedules, precise definitions of end products, a list
of all pertinent assumptions, and an analysis of risk (i.e.,
the probability that actual costs will exceed estimated
costs.) Three types of estimates must be made by managers at
different times during the conversion. A feasibility esti-
mate is a gross estimate used to evaluate tradeoffs on al-
ternative approaches to conversion; a commitment estimate is
used to commit resources and make cost/quality tradeoffs;
and an operational estimate specifies how project management
will use its resources.

The handbook consists of tables which detail the tasks,
inputs, and outputs needed for different stages of conver-
sion. The stages of conversion addressed are feasibility
analysis, planning, preparation, conversion of programs and
test data, production (conversion),
implementation/installation, translation and unit testing.

-47-

GUIDELINES TO SOFTWARE CONVERSION by Paul Oliver [16]

Five definitions set the scope of the paper. Conver-
sion is defined to mean any change made to a program or sys-
tems of programs solely for the purpose of enabling such a
program or system to execute correctly on a computer dif-
ferent from the one for which they were originally devised.
Translation refers to a largely automated process of conver-
sion in which the original programs themselves serve as ade-
quate specifications for the new programs to be produced.
Recoding is similar to translation except that the process
is largely manual. Reprog ramming refers to a conversion
which may entail a system redesign (e.g., batch to on-line)
but no significant functional redesign. Redesign refers to
a conversion effort which involves functional redesign and
is therefore akin to new development.

A conversion project overview is provided, addressing
the areas of preparation, production, implementation,
software tools, and managing the conversion project. The
following points are emphasized in the first section:

1. Program translation (i.e., one-for-one, or close to it,
conversion) should precede any modification. This is done
to avoid intermingling, and thereby compounding any transla-
tion errors with modification errors.

2. The entire conversion process must be thoroughly and
carefully documented. Documentation should include the fol-
lowing: converted source programs, flowcharts of the con-
verted systems, listing of all job control language programs
used, standard file labels, file conversion parameters,
operating instructions and technical notes, and unit and
system test reports.

3. Unit and integration testing should be repeated on con-
verted programs and test data once these are installed on
the target system,

4. Manpower and time are not generally interchangeable in a
software production project, but within the bounds of common
sense, they are in a conversion project.

5. Productivity rates also differ widely between conversion
and development. Software development proceeds at approxi-
mately 12-20 lines per man-day for general application
software, while conversion may proceed at rates as high as
400 lines of code per man-day.

6. The conversion staff should never be a part-time group
which participates in conversion activities, but whose
members continue to report to their parent organizations.

-48-

The next section of the paper addresses conversion
problems. Some of the problems cited are: machine time re-
quirements will conflict with production; computer words
vary in the number of characters they contain, causing prob-
lems in numerical accuracy as well as data movement; the
format and the amount of information required to define a
file vary among languages.

The last section of the paper focuses on conversion
cost estimates, with detailed data about conversion costs
per line supplied.

Two appendices are included with the paper. Appendix A
is entitled System Conversion Checklist, and Appendix B is
entitled COBOL Programming Problem Sources.

PLANNING GUIDE FOR SOFTWARE CONVERSION by HEADQUARTERS,
DEPARTMENT OF THE ARMY, OCTOBER, 1977 [11]

This guide has been developed as a step-by-step manual
for the guidance of ADP managers who must plan in-house
software conversion. The conversion planning guide is di-
vided into four phases.

Phase I is project initiation. This entails the as-
signment of the conversion manager and the team.

Phase II is the conversion workload analysis. The
first step in this phase is listing all application systems
that have to be converted and their locations in the organi-
zation. This involves interviewing project leaders in order
to understand their systems, reviewing each program to en-
sure that all subroutines and utilities are identified, and
obtaining an application system flowchart to include with
the data which shows program reliance and interaction. The
next step in this phase is identifying program conversion
problems. Conversion problems are divided into one of the
following groups:

1. Logic changes involving a modification of the programs to
facilitate the running of this program on another computer
system.

2. Code replacement involving a modification to the programs
but only affecting the program in a very limited area.

3. Recompilation of a program on the new system, allowing
for minor syntax errors to be corrected.

-49-

Present data base management system
functions/capabilities now in use should be identified as
part of Phase II. Next, current hardware/software confi-
gurations should be identified. Documentation should be re-
viewed for adequacy and completeness. Finally, conversion
resource requirements should be estimated.

Phase III is planning for conversion (pre-award) . This
phase involves the following: developing a pre-conversion
plan, selecting the conversion order of programs and files,
preparing a preliminary conversion schedule, establishing
reporting requirements for the conversion effort, and
developing an overall conversion training plan.

The last phase is planning for conversion (post-award)

.

This phase involves the following: developing and completing
conversion aids, training for project leaders, initiating
specialized training for the conversion team, initiating
generalized training for the conversion workforce,
reevaluating application systems identified for conversion,
identifying new ADP hardware and software, determining stan-
dards and procedures to be used in the pilot project, per-
forming the pilot project, reviewing the pilot project,
preparing the conversion plan, establishing production
resources, approving the conversion plan, completing the
production and scheduling documentation.

ADP CONVERSION COST-A STUDY FOR THE FY76 WORLDWIDE ADP
SINGLE MANAGERS CONFERENCE [1]

This study addresses the cost of conversion from one
ADP computer system to another, and the consideration of
this cost in the acquisition of replacement ADP equipment.

The following is a list of the elements of a conversion
which require the expenditure of resources:

1. Conversion of Application Programs - Those written in
ANSI source languages are the least costly to convert. Com-
plex programs, programs with a large number of patches, pro-
grams highly dependent on utilities unique to a site or
machine, and programs without adequate documentation will
all be more costly to convert. The availability of usable
conversion utilities will reduce the cost of converting the
application programs, but the cost of obtaining the utili-
ties must be considered. Non-availability of test data to
test all application programs will increase conversion
costs.

2. Conversion of Data - If a DBMS is desired, the availabil-
ity of utilities to convert data from the current file or

-50-

DBMS is required.

3. Conversion of Operating Procedures - Differences and
similarities in the following areas will affect this cost:
how the operating systems handle division of tasks, how much
manual intervention is desired or required, how much control
the user has (via JCL) over what the operating systems will
do, and how each operating system handles error recovery,

4. Support Software.

5. Facilities Requirements - floor space, air conditioning,
and electrical power.

6. Parallel Operations Cost.

7. Training - systems programmers, analysts, applications
programmers, operators and sometimes users.

8. Acquisition Activity - Resources will be spent producing
studies on all aspects of the conversion. Examples of these
studies are: hardware differences, site requirements, sys-
tems software comparability, RFP preparation, and other do-
cuments.

9. Management and Administrative Cost.

Four preliminary activities in conversion have been
identified and should be completed before the conversion is
undertaken. They have been outlined below, according to
their relative importance.

1. Collect data regarding programs, files, and operating en-
vironment, and update the data where necessary.

2. Standardize - translate programs to a standard program-
ming language, such as ANSI COBOL.

3. Evaluate and select conversion alternatives - ranging
from total redesign to emulation/simulation.

4. Decide whether the conversion is to be done by in-house
or contractor personnel.

The cost of converting applications programs can be di-
vided into four categories: analysis costs; programming man-
power costs; machine costs; data conversion costs. Formu-
las to determine programming manpower costs are supplied in

this study.

-51-

The principal cost element in computer conversion is
the conversion of data from the old system to the new sys-
tem. Considerations to be included in the data conversion
are: size of the data base; structure of the files; access
method; production of data to test the transformed system.

Many factors affect the actual cost of converting the
operating procedures. Two of the major factors which affect
this cost are the similarities of the JCL's for the two
machines and the existence of documentation.

One of the factors which can be easily estimated is
resource costs. This element of conversion includes the
cost of support software. The support software on the tar-
get machine should be divided into the following three ca-
tegories: commercially procured packages available on both
the old and new machines; utilities which are supplied by
the new vendor; locally developed utilities.

Facilities requirements are estimated by determining
the facility required to support each alternative and es-
timating the cost to develop, acquire or modify each of
these facilities. Costs are estimated in terms of such ele-
ments as floor space, power requirements, new air condition-
ing, etc.

The cost of parallel operations is the cost of running
the new system while the old system continues to provide
support to the users. A time-phased plan for conversion ac-
tivities is required for this estimate.

Training costs are among the easiest to estimate. The
total training cost is the cost of the man-hours lost during
this training, plus the travel costs, plus the fees, if any,
for the courses.

Acquisition activity cost must be considered a cost of
conversion, particularly where one alternative is not to
convert. This cost entails manpower allocated to the ac-
quisition, costs for studies conducted, and a projected cost
for travel associated with the acquisition.

The management and administrative costs detailed above
cannot be ignored. It is suggested that the organization
designated to perform the conversion be evaluated with the
objectives of establishing a management : technic ian ratio.
Commercial firms establish this ratio as high as 1:1. A
more reasonable ratio in the Federal Government would be
1:2.

-52-

7. CONCLUSIONS

The interviews with Federal Government agencies who
have undertaken large conversion efforts and conversion spe-
cialists who perform conversions as a profession, as well as
the literature review, indicate that many problems exist re-
garding conversion. The conclusions are described under the
following topics: management problems, conversion costs,
conversion tools, personnel problems, effects of standards,
and critical areas.

7.1 Management Problems

Management problems are significant because of the
quantity and complexity of the resources that must be
brought together and managed. The following paragraphs
describe some of these management problems.

Resource Requi rements

Top management must understand the reasonable time
frame and costs needed to produce useable programs on the
target machine. Resources commensurate with the job must be
provided. In addition, management should keep in mind that
a conversion schedule compressed at an inappropriate time
may very well ensure unsatisfactory results. If conversion
is viewed as the software-producing activity which it really
is, and not as a mode of catching up to where an agency was,
the results of conversion would be much more satisfactory.

Documentat ion

Programs should be designed with conversion in mind.
This implies well-structured programs that are maintainable,
readable, and understandable. Good documentation is an ab-
solute necessity. Many agencies develop adequate user docu-
mentation, but very few develop adequate programmer documen-
tation, especially comments. Very often, when programmer
documentation is developed, it is not updated. Standards
for documentation should be developed and used. Proper pro-
gram documentation should begin during design. Pre-coding
and post-coding documents should be produced. Documentation
can not be left for the end of the project, but must be an
integral part of development and, thus, must be produced
during the analysis, design, coding and testing stages.
Programs must be well commented. Agencies should have rules
governing when and where comments must appear in a program.

Test Files

-53-

Adequate test files must be developed during program
development and maintained for the life of the program. The
test files should be modified to test new sections of code,
when this code is added to the program. Test files and do-
cumentation, if both are kept up-to-date, can not only be of
tremendous benefit during an eventual conversion, but will
prove to be extremely valuable during maintenance.

Conversion Techniques

One of the most important decisions during a conversion
effort is the choice of a conversion technique (recoding,
reprog ramming , redesign). Federal agency management should
be integrally involved in choosing a conversion technique,
since this choice will ultimately affect the size and quali-
ty of the converted system. However, our interviews with
Federal agencies lead us to believe that a conscious deci-
sion as to which technique to use is usually not made by
management within each agency. Very often, this decision is
left up to the contractor who performs the conversion. It is
in the best interests of the contractor to select recoding
as the conversion technique that he will use, since it is
the least costly technique and takes less time than the oth-
er techniques. Also, conversion contractors usually have
data bases that they can use to estimate recoding costs, but
not reprog ramming or redesign costs. Reprogramming and
redesign costs are much more difficult to estimate since a

greater amount of human intervention is required in these
techniques. Thus, translators and other automated tools
used in reprogramming and redesign, make a much less signi-
ficant impact on the conversion process, and thus, on the
cost of conversion.

Management can, and should, help determine which
conversion technique (s) are to be chosen for a particular
conversion. This can be done either explicitly or implicit-
ly.

An explicit choice involves examining the various
conversion techniques, the programming languages involved,
and the performance requirements of the system. The proper
technique can then be chosen. One useful set of criteria
that can be used in deciding among conversion techniques is
listed below:

Recoding - Source and target languages should be
similar. The source and target computers should
have comparable hardware/software capabilities. If
recoding is used when hardware/software capabilites
are not comparable, then the capabilities of the new
computer may not be utilized, often resulting in

-54-

inefficient programs.

Reprogramming - Source and target languages are dis-
similar (e.g., converting from assembler to COBOL).
Line-for-line translation (or recoding) , when the
source and target languages are dissimilar, may well
result in converted code which is much larger than
the source code. For example, in a conversion of
assembly language to COBOL, assume that the first
assembly language statement loads register 1 with
variable A; the second statement loads register 2

with variable B; the third statement adds the con-
tents of register 1 to register 2; and the fourth
statement puts the new contents of register 2 in
variable C. Some translators, performing line-for-
line conversion, may pick this up and generate four
COBOL statements corresponding to these assembly
language statements. In turn, when these COBOL
statements are compiled and assembled, they will
produce 16 assembly language statements, producing a

four-fold code expansion. A good programmer, using
reprogramming rather than recoding, would produce
COBOL code saying "ADD A TO B GIVING C", which would
compile much more efficiently.

Redesign - The source program is many generations
old. The design is out-of-date, and the program is
poorly structured and documented. The agency
desires a more modular, maintainable and readable
program.

A manager can implicitly specify the appropriate
conversion technique by embedding performance requirements
into the conversion RFP. In this way, the contractor is le-
gally obliged to address constraints specified in the RFP
(such as response time, memory requirements, size of the
target program, etc.). The choice of recoding as a conver-
sion technique will often fail to result in the target pro-
gram satisfactorily meeting these performance constraints.
In fact, translators, which use the recoding philosophy,
have been known to produce an object expansion rate of 10 to
15 times. Thus, if the new computer is six times faster
than the old one, the converted programs will execute at
about one-half the speed as before conversion. When perfor-
mance requirements are embedded in the RFP, the contractor
is placed into the ideal situation, from the agency's stand-
point. The contractor will still attempt to utilize the
most economical and timeliest technique he can, but this
technique must also meet the performance requirements.
Thus, hopefully, the product that the agency will obtain is
the one that is the least costly and most efficient, but

-55-

also satisfactorily meets minimum performance requirements.

Estimating the cost of producing a system with speci-
fied performance constraints is very difficult. If perfor-
mance constraints are included, the contract will probably
not be a fixed price contract.

Many agencies fail to include any performance con-
straints in the RFP, asking instead for functionally
equivalent source code. This can lead to degradation in
performance, as illustrated in the assembler to COBOL trans-
lation documented above, and may result in a converted sys-
tem which does not meet the user's needs.

7.2 Conversion Costs

Conversion companies maintain data bases containing in-
formation enabling them to make fairly accurate conversion
estimates. Much of the information on these data bases is
historical, resulting from past conversion projects. The
high degree of confidence placed in the accuracy of this
costing information is demonstrated by the reluctance of
many conversion companies to accept anything but fixed-price
contracts. However, the conversion companies which were in-
terviewed had very little costing information pertaining to
languages other than COBOL. Furthermore, the costing infor-
mation contained in these data bases was derived from
conversions utilizing recoding, as opposed to reprog ramming
or redesign.

One of the causes of widespread cost overruns for
Federal agency conversions is the lack of a comprehensive
cost assessment methodology. Since various methods are used
to determine conversion costs, parameters included in some
methods are omitted or regarded as of less significance in
others. This often results in conversion costs excessive
enough to offset a substantial percentage of the savings ex-
pected from expanded applications, increased memory, and
faster throughput. Cost benefit analysis, however practi-
cal, has seldom been a prerequisite for undertaking software
conversion within the Federal sector. Typically, many costs
associated with conversion are hidden within the total pro-
ject cost. The gross underestimation of conversion costs is
due, in part, to the lack of a distinction, by management,
between the costs of conversion elements and those of ongo-
ing operations.

-56-

Agencies need information to help them make conversion
estimates. Although much of the conversion being done in
Federal agencies is either from assembler-to-COBOL or from
COBOL-to-COBOL, information is also needed concerning
conversion costs of other languages, particularly FORTRAN.
As explained earlier in this chapter, Federal agencies
should examine various conversion techniques before begin-
ning coding for a conversion. Part of this examination
should include a cost benefit analysis of each of the tech-
niques. Thus, much more detailed cost information is needed
concerning reprog ramming and redesign, as well as receding.

7.3 Conversion Tools

Conversion specialists tell us that many customers want
to know what types of conversion tools are available. In-
formation concerning the availability and the usefulness of
various tools is certainly a prerequisite for planning,
staffing and organizing a conversion project. Tools, such
as translators, file comparators and source code refor-
matters, can be extremely helpful in conversion projects and
are, in fact, being used by a wide variety of conversion
houses and Federal agencies.

However, the limitations of tools must be realized.
Automated tools usually solve the easy problems which are
encountered in conversion, such as differences in syntax
between two programming languages. The semantics of a block
of code, on the other hand, can sometimes be determined only
by interfacing directly with the person or persons who wrote
the code. Automated tools usually won't translate the
correct semantics of a block of code if the semantics cannot
be identified by merely scanning the code. Look at the fol-
lowing block of FORTRAN code written for a CDC 6700 computer
which stores ten characters per word.

COMMON A(4) , B(4)
DO 100 1=1,4
B(I)=A(I)

100 CONTINUE

In attempting to convert this program to an IBM 360/370
series computer, a translator would probably not modify
these lines of code, since they are syntactically correct
statements for IBM FORTRAN as well as CDC FORTRAN. However,
the arrays A and B may very well have been used to store a

40 character string on the CDC machine, 10 characters in
each element of the array. In order for the semantics of
this block of code to be preserved on an IBM 360/370, which
stores 4 characters per word, the following block of code

-57-

would have to be substituted for the above one.

COMMON A (10) , B (10)
DO 100 1=1,10
B(I)=A(I)

100 CONTINUE

A translator would not "be smart enough" to make this sub-
stitution. It would have no way of knowing if array dimen-
sions and/or loop counters are set up a certain way in order
to store and manipulate character data, and are, thus,
dependent on the word size of the machine. Conversely, if
the array dimensions and/or loop counters are set up for nu-
merical computations, they are independent of the word size.

Tools are not an end in themselves. They are just one
part of a complex management strategy, and the people organ-
izing and directing conversion projects must know how and
when to use these tools. Also, most of the existing tools
were written for, and execute correctly on, only one comput-
er. A substantial effort is usually required to modify
these tools to work in a different environment. Therefore,
more general tools, which work in a broader environment, are
desirable. Examples of such tools are translator generators
and compiler compilers. A greater benefit can accrue from
conversion tools if the tools themselves are written in
higher level languages, with the objective of being port-
able, maintainable and modifiable.

7.4 Personnel Problems In Conversion

Conversion is viewed, by managers and programmers
alike, as an undesirable activity. Managers are often
threatened by conversion. They have not planned for conver-
sion, nor have they budgeted for conversion. Eventually
they are forced to convert, and must perform the conversion
in a timely manner, with as little disruption to the ongoing
system as possible.

Programmers seem to view conversion with equal disdain.
They are "stuck" with a program that they neither designed
nor coded, and now they must get it to execute correctly on
a machine with which they are not familiar. Additionally,
conversion is much more mechanical and not nearly as intel-
lectually stimulating as new coding or design. All of the
above people problems are compounded by the fact that the
natural instinct of most individuals is to resist change,
and cling to that with which they are most familiar.

-58-

There are no easy solutions to the above people prob-
lems. Managers need to be made aware that conversion is a
part of their job. They must budget for conversion and
develop a comprehensive conversion plan, like the one out-
lined in Chapter 2. Conversion must be scheduled, and com-
puter time must be proportioned between conversion and on-
going production jobs.

Certainly, the image of conversion as an undesirable
activity which is assigned to the low man on the totem pole
must be changed. Perhaps, the utilization of tools to as-
sist with the repetitive aspects of conversion can allow
programmers more time to spend on the more challenging as-
pects of conversion. If possible, agencies should try to
get programmers involved in the early stages of conversion,
especially in the study of conversion techniques. In this
way, programmers are made to feel more a part of the total
project, rather than seeing themselves as coders being used
for short term conversion jobs.

7.5 The Effects Of Standards On Conversion

ANSI Standards and Federal Information Processing Stan-
dards (FIPS) can help to reduce conversion problems. Howev-
er, standards such as these must include features that are
used and needed by the user community. If the standard for
a specific higher level language does not include these
features, vendors will almost definitely supply them as "ex-
tensions" to the language. When application programs incor-
porate these extensions, the conversion problem is compound-
ed since the syntax, as well as the semantics, of these ex-
tensions will invariably differ from vendor to vendor.

7.6 Critical Areas

As a result of the information derived from this study,
the following areas have been identified as most critical,
and in need of immediate attention:

1. Guidance is needed concerning the selection of the
most appropriate conversion technique to employ in a

conversion effort. Some of the conversion tech-
niques which should be examined are recoding, repro-
gramming, and redesign.

-59-

2. Guidance is needed concerning the best way to plan
for future conversions during new development. The
philosophy which should be encouraged is that new
programs should be designed and developed with fu-
ture conversion in mind.

3. Guidance is needed concerning the type of informa-
tion which should be included in an RFP to perform a

conversion.

4. Guidance is needed concerning conversion cost esti-
mation. The following two areas need to be ad-
dressed: (a) costs for different techniques which
can be usecJ in conversion, such as recoding, repro-
gramming and redesign; (b) an examination of the
ways in which costs differ when utilizing different
programming languages in conversion.

5. A common data interchange format should be provid-
ed, capable of supporting file and database manage-
ment environments, that would provide assistance in
data conversion.

6. An in-depth study of the problems of database
management system conversion is needed which would
provide guidance to minimize present and future da-
tabase management system conversion problems.

7. A data dictionary capability should be available to
Federal Government agencies to assist in the plan-
ning and data preparation phases of a conversion. A
data dictionary is a software tool which can contain
information concerning all the programs and data in

an organization.

8. Research directed toward general solutions to the
program conversion problems that exist in a database
management environment is necessary.

9. A cross reference list should be provided, which
lists all translators (and other tools) and where
these tools can be obtained. This list should also
provide brief descriptions of the tools and their
functions

.

10. Guidance is needed to help overcome management prob-
lems involved in conversion, including a detailed
approach to addressing each of the management prob-
lems .

-60-

In addition to the critical areas, identified above,
other areas have also been identified. These other areas
are not as critical as the ones identified above, but need
to be addressed sometime in the future in order to encourage
more efficient and more effective conversion. These areas
are listed below:

1. More generalized conversion tools need to be
designed and developed.

2. Guidance is needed concerning the complete life cy-
cle of test files. The proper technique to be used
in developing test files to be used in conversion
should be addressed, as well as the update and
maintenance which is needed in order to keep them
current with program changes.

3. Training courses and workshops on conversion should
be provided.

4. Guidance is needed concerning how to determine when
to perform a conversion in-house and when to con-
tract out for the conversion. The different types
of people who are needed for various types of
conversions need to be identified.

5. Guidance is needed concerning the operational con-
siderations of conversion.

6. Guidance is needed for scheduling a conversion pro-
ject.

7. Guidance is needed concerning data preparation for
conversion.

8. Guidance is needed concerning the ways in which to
explore alternatives to conversion.

As a result of the conclusions stated in this study,
NBS has initiated a comprehensive program to develop a set
of standards and guidelines which will help reduce the costs
and increase the efficiency of conversions done by Federal
agencies. Subject to the availability of funds and ap-
propriate human resources, the following products will be
produced by NBS:

-61-

A guideline for the evaluation and selection of
conversion techniques

A guideline on how to plan for future conversions by
utilizing better system design, development and do-
cumentation techniques

A guideline for conversion cost estimation

A guideline for developing an RFP for conversion
services

An annotated conversion tool directory

A guideline on how to program to achieve portability

A guideline on database management conversion pro-
viding a tutorial on the special problems encoun-
tered and an analysis of alternative techniques

A data translation standard providing a data inter-
change form on magnetic tape supporting file and da-
tabase management environments

A data dictionary standard to assist Federal Govern-
ment agencies with their planning and data prepara-
tion

-62-

Appendix A: Questions For Vendors and Federal Agencies

Note: Most of the questions are relevant for both ven-
dors and Federal agencies. However, some of the questions
apply only to vendors or only to Federal agencies.

1. Reason for Conversion (e.g., new computer acquired,
desire to share program with another installation,
etc .

)

2. Type of conversion - size of program, converting
from what to what, costs, major problems encoun-
tered, languages.

3. How could development process have been improved to
minimize the conversion problems that have resulted?
(planning for conversion)

4. Were you satisfied with the conversion effort that
was done?

5. Was the contractor late or on schedule?

6. Was the contractor's cost estimate accurate?

7. Did the converted system run as efficiently as the
old one? If not, how much inefficiency was intro-
duced? Could this have been avoided? Was a choice
given to you - more efficiency for more cost?

8. How much direct contact was needed with the person
who wrote the code for the program?

9. What types of automated tools were helpful in
conversion? What new tools would be helpful if they
could be developed?

10. What was the quality of the documentation of the
software to be converted? Where was it deficient?
Did you desire documentation as part of the conver-
sion task deliverables? Was the documentation pro-
duced for you acceptable?

11. What was the quality of the code that was converted?
Was it well structured and did it contain sufficient
comments?

-63-

12. Did you utilize any in-house programming or documen-
tation standards?

13. How can (Federal) standards aid in the conversion
process?

14. How can software conversion costs be reduced?

15. Do you feel that your management recognized the fact
that most production programs will eventually be
converted to newer equipment? How can they be edu-
cated, so that they will "plan" for conversion dur-
ing development?

16. Did the system being converted utilize a commercial
DBMS? Did this present any special problems?

17. Have the differences in JCL caused significant prob-
lems in conversion?

18. Did you use vendor-unique features? If so, why?
What percentage of conversion problems are caused by
using vendor-unique features? Could the same thing
have been accomplished using standard features? If
so, at what price? (loss of efficiency, loss of ca-
pability, etc.)

19. Did you ever consider doing the conversion in-house?
Why or why not? Why did you choose to contract out
the conversion effort?

20. What are the human problems involved with conver-
sion? Is it hard to train people in conversion
techniques? Did you try? Are your people properly
trained in conversion? What are your attitudes to-
ward conversion? Are your best or worst people usu-
ally put on conversion projects?

21. At what point does conversion become impractical,
and re-design more cost effective?

22. How much of the conversion effort involved was real-
ly new development?

23. Did your system have security constraints?

24. How did the conversion effort interface with opera-
tions? Did the contractor use your computer to do
the conversion? Was there enough time available be-
cause of the current workload?

-64-

Appendix B: Bibliography and References

Note: Many of the following documents can be obtained
from the National Technical Information Service by referenc-
ing the appropriate NTIS number,

1. A study for The PY76 Worldwide ADP Single Managers
Conference
ADP Conversion Co^t

,

Randolph AFB Tx , tJ^SetobeiT 1^75

2. Berg, John, L. , editor
Data Base Di rect ions - The Conversion Problem
National Bureau of Standards and the ACM (draft to be pub-
lished in 1980)

3. Computerworld
"Users Underestimate Conversion Costs : Survey"
October 8, 1979, p. 55

4. Conference Book of the National Symposium on Computer
Systems Enhancement
Converting Today ' s Systems To Tomorrow ' s Technology
Data Processsing Management Association^ November 13-15,
1979

5. Cooper, Roger
"Upgrading Federal Computers Through Existing Systems"
Government Executive, August 1979

6. Dooley, Ann
"Conversion Causes Welfare Payment Delays"
Computerworld, October 15, 1979

7. Federal Information Processing Standard 43
Aids for COBOL Program Conversion (FIPS PUB 21 to FIPS PUB
21-1)
National Bureau of Standards, December 1, 1975

8 . Fleiss , J. , et al

.

Prog ramming for Transferability
Prepared for Rome Air Development Center, NTIS AD-750 897,
September 1972

9. Frank, Werner L,
The New Software Economics
Library of Congress Catalog No. 79-90434, 1979

10. Fry, J. , et al

.

"An Assessment of the Technology for Data and Program-

-65-

Related Conversion"
AFIPS Conference Proceedings,
National Computer Conference, Anaheim, California, June 5-8,
1978
pp. 887-907

11. Headquarters, Department of the Army
Army Automation Planning Guide for Software Conversion
Department of the Army Technical Bulletin, October 1977

12. Lynn, C. , et al

.

"Program Conversion - One Successful Paradigm"
AFIPS Conference Proceedings, Volume 48,
National Computer Conference, 1979

13. Morgan, L.W., et al.
Conversion of CCF UN I VAC Software
MITRE Corporation MTR-4710, January 1978

14. NTIS
Computer Software Transferability and Portabil ity
A Bibliography with Abstracts,
NTIS/PS-79/0567, May 1979

15. Oliver, Paul
Bibl iography of Conversion References
Federal COBOL Compiler Testing Service,
NTIS ADA052462, April 4, 1978

16. Oliver, Paul
"Guidelines to Software Conversion"
AFIPS Conference Proceedings,
National Computer Conference, Anaheim, California, June 5-8,
1978, pp. 877-886

17. Oliver, Paul
Handbook for Estimating Conversion Costs of Large Business
Programs
Department of the Navy,
NTIS AD-A065145, February 14, 1979

18. Oliver, Paul
Survey of Conversion Support Software
Federal COBOL Compiler Testing Service,
NTIS ADA053741, March 16, 1978

19. Rand Information Systems
Conversio n Special Report : Chang ing to New Technology
Commissioned by the Data Processing Management Association
Education Foundation for the National Symposium on Computer
Systems Enhancement, November 13-15, 1979

-66-

20. Rand Information Systems
Questions and Answers on Conversion

21. Razza, Sal
"Software Portability"
Computerworld, November 19, 1979, p. 57

22. Schneider, Daniel B.
Computer Systems Conversion
A Management Perspective
U.S. Department of Justice,
NTIS PB-297 604, October 1978

23. The Comptroller General of The United States
' Report to the Congress
' Mi 11 ions in Savings Possible in Converting Programs from One

Computer to Another
"

GAO FGMSD-77-34, September 15, 1977

j

24. The Comptroller General of the United States
I The Federal Information Processing Standards Program ; Many

I

Potential Benefits , Little Progress , and Many Problems
I GAO FGMSD-78-23, April 19, 1978

j

25. US Army Computer Systems Support and Evaluation Agency
Survey of Software Conversion Aids (Emulators , Simulators ,

Translators)

1 December 1975

-67-

I

NBS-114A (REV. a-78i

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET

1. PUBLICATION OR REPORT NO.

4. TITLE AND SUBTITLE COMPUTER SCIENCE & TECHNOLOGY;

CONVERSION OF FEDERAL ADP SYSTEMS: A TUTORIAL

5. KuDI I cation Da te

August 1980

7. AUTHOR(S)

Joseph C. Collica, Mark W. Skall , Gloria R. Bolotsky

8. Performing Organ. Report No.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, DC 20234

/ffOJk Unit No.

11. Contract/Grant No.

12. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS rsfree*. City. State, ZIP)

Same as Item 9

13. Type of Report & Period Covered

Final

15. SUPPLEMENTARY NOTES

Library of Congress Number: 80-600106
I I

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

16. ABSTRACT (A 200-v/ord or leaa tactual summary of moat significant information. If document includes a significant bibliography or

literature survey, mention it here,)

This tutorial report was undertaken to provide a better understanding of
conversion of Federal Government ADP Systems. Three sources were used for
gathering the required information to prepare this tutorial: (1) interviews
with commercial conversion experts; (2) interviews with Federal Government agency
personnel who have recently experienced conversions; (3) current literature. The
first three chapters comprise the tutorial. The next three chapters discuss the
information gathered from the above three sources. The last chapter summarizes
the authors' conclusions, while highlighting the major problem areas requiring
guidance.

!

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; '

separated by semicolons)

Cqnversion costs; conversion problems; conversion tools; database management;
Federal agencies; language translators; maintenance; portability.

18. AVAILABILITY Q Unlimited

1 1
For Official Distribution. Do Not Release to NTIS

[yl Order From Sup. of Doc, U.S. Government Printing Office, Washington, DC
20402

Order from National Technical Information Service (NTIS), Springfield,

VA. 22161

19. SECURITY CLASS
(THIS REPORT)

UNCLASSIFIED

21. NO. OF
PRINTED PAGES

73

20, SECURITY CLASS
(THIS PAGE)

UNCLASSIFIED

22. Price

$4.00

USCOMM-DC
CIU.S. GOVERNMENT PRINTING OFFICEi 1980-31 1-046/185

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the

National Bureau of Standards reports NBS research and develop-

ment in those disciplines of the physical and engineering sciences in

I

which the Bureau is active. These include physics, chemistry,

engineering, mathematics, and computer sciences. Papers cover a

j

broad range of subjects, with major emphasis on measurement

I

methodology and the basic technology underlying standardization.

Also included from time to time are survey articles on topics

I

closely related to the Bureau's technical and scientific programs.

!
As a special service to subscribers each issue contains complete

citations to all recent Bureau publications in both NBS and non-

j
NBS media. Issued six times a year. Annual subscription: domestic

$1.1; foreign $l6.2.'i. Single copy. %} domestic; $3.75 foreign.

i

NOTE; The Journal was formerly published in two sections; Sec-

I tion A "Physics and Chemistry" and Section B "Mathematical

! Sciences."

I

DIMENSIONS/NBS—This monthly magazine is published to in-

!
form scientists, engineers, business and industry leaders, teachers,

students, and consumers of the latest advances in science and

technology, with primary emphasis on work at N BS. The magazine

highlights and reviews such issues as energy research, fire protec-

tion, building technology, metric conversion, pollution abatement,

health and safety, and consumer product performance. In addi-

tion, it reports the results of Bureau programs in measurement
standards and techniques, properties of matter and materials,

engineering standards and services, instrumentation, and
automatic data processing. Annual subscription; domestic $11;

foreign $13.75.

NONPERIODICALS

Monographs— Major contributions to the technical literature on

various subjects related to the Bureau's scientific and technical ac-

tivities.

Handbooks—Recommended codes of engineering and industrial

practice (including safety codes) developed in cooperation with in-

terested industries, professional organizations, and regulatory

bodies.

Special Publications—Include proceedings of conferences spon-

sored by NBS, NBS annual reports, and other special publications

appropriate to this grouping such as wall charts, pocket cards, and
bibliographies.

Applied Mathematics Series— Mathematical tables, manuals, and
studies of special interest to physicists, engineers, chemists,

biologists, mathematicians, computer programmers, and others

engaged in scientific and technical work.

National Standard Reference Data Series— Provides quantitative

data on the physical and chemical properties of materials, com-
piled from the world's literature and critically evaluated.

Developed under a worldwide program coordinated by NBS under

the authority of the National Standard Data Act (Public Law
90-396).

NOTE; The principal publication outlet for the foregoing data is

the Journal of Physical and Chemical Reference Data (JPCRD)
published quarterly for NBS by the American Chemical Society

(ACS) and the American Institute of Physics (AiP). Subscriptions,

reprints, and supplements available from ACS, 1 155 Sixteenth St.,

NW, Washington, DC 20056.

Building Science Series— Disseminates technical information

developed at the Bureau on building materials, components,

systems, and whole structures. The series presents research results,

test methods, and performance criteria related to the structural and
environmental functions and the durability and safety charac-

teristics of building elements and systems.

Technical Notes—Studies or reports which are complete in them-

selves but restrictive in their treatment of a subject. Analogous to

monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final

reports of work performed at N BS under the sponsorship of other

government agencies.

Voluntary Product Standards— Developed under procedures

published by the Department of Commerce in Part 10, Title 15, of

the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all

concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a

supplement to the activities of the private sector standardizing

organizations.

Consumer Information Series— Practical information, based on

NBS research and experience, covering areas of interest to the con-

sumer. Easily understandable language and illustrations provide

useful background knowledge for shopping in today's tech-

nological marketplace.

Order the above NBS publications from: Superintendent of Docu-

ments. Government Printing Office, Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR's—from
the National Technical Information Services, Springfield, VA 22161

.

Federal Information Processing Standards Publications (FIPS

PUB)— Publications in this series collectively constitute the

Federal Information Processing Standards Register. The Register

serves as the official source of information in the Federal Govern-

ment regarding standards issued by NBS pursuant to the Federal

Property and Administrative Services Act of 1949 as amended.

Public Law 89-306 (79 Slat. 1127), and as implemented by Ex-

ecutive Order 11717(38 FR 12315, dated May 11, 1973) and Part 6

of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or

final reports on work performed by NBS for outside sponsors

(both government and non-government). In general, initial dis-

tribution is handled by the sponsor; public distribution is by the

National Technical Information Services, Springfield, VA 22161,

in paper copy or microfiche form.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey bibliographies

are issued periodically by the Bureau:

C ryogenic Data Center Current Awareness Service. A literature sur-

vey issued biweekly. Annual subscription: domestic $35; foreign

$45.

Liquefied Natural Gas. A literature survey issued quarterly. Annual
subscription; $30.

Superconducting Devices and Materials. A literature survey issued

quarterly. Annual subscription; $45. Please send subscription or-

ders and remittances for the preceding bibliographic services to the

National Bureau of Standards, Cryogenic Data Center (736)

Boulder, CO 80303.

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
Washington, D C. 20234

OFFICIAL BUSINESS

Penalty for Private Use. $300

POSTAGE AND FEES PAIO
U.S. DEPARTMENT OF COMMERCE

COM-21S

SPECIAL FOURTH-CLASS RATE
BOOK

